Педосфера и ее значение - Курсовая работа

бесплатно 0
4.5 43
Почва как уникальная природная система, ее свойства, состав. Образование биокосной системы почвы и значение педосферы. Роль почвы в регулировании углерод-кислородного массообмена в биосфере. Биогеохимическая трансформация минерального вещества педосферы.


Аннотация к работе
Почва - уникальная природная система. В.И. Вернадский удачно назвал почву «биокосным телом». Компоненты разной крупности различаются механическими и физико-химическими свойствами. Минеральная часть очень разнородна и помимо обломков минералов исходных горных пород представлена также различными почвенно-гипергенными новообразованиями. Почва состоит не только из минеральных, но и из органических соединений. Среди них организмы, осуществляющие фотосинтетическое продуцирование органического вещества (высшие растения); организмы, обеспечивающие деструкцию ежегодно отмирающих органов растений (почвенная мезофауна и животные); организмы, производящие глубокую трансформацию продуктов деструкции, вплоть до их полной минерализации с выделением СО2 и образованием специфических органических соединений почвы (микроорганизмы). Первым из них является мертвое органическое вещество, из которого в результате жизнедеятельности мезофауны и микроорганизмов постепенно выделяются элементы, аккумулированные фотосинтетиками и необходимые для их воспроизводства. Второй компонент почвы, являющийся источником доступных форм химических элементов Для высших растений, - дисперсные минеральные частицы, которые благодаря огромной поверхности в единице объема содержат значительное количество сорбированных химических элементов. Эти элементы не могут вымываться фильтрующимися через почву атмосферными осадками, но легко поглощаются корнями растений. Агрегированность почвенных частиц способствует сохранению и регулированию поступления воды и элементов питания в высшие растения. Планетарное значение педосферы Почва - такой же компонент природной среды Мировой суши, как горные породы, воды, растительность и др. С началом освоения живым веществом суши на ее поверхности стало формироваться особое биогеохимическое образование, отсутствующее в океане, - почва. Они образуют лесные подстилки, степной войлок. В одних почвах гумусовые вещества диффузно распределены в почвенном матриксе, в других - склеивают мелкие минеральные частицы, образуя гумус типа муллъ. Согласно Д.С. Орлову (1974), структурная ячейка гуминовых кислот из дерново-подзолистой почвы имеет вид C173H183O86N11, из чернозема - C73H61O32N4; структурная ячейка фульвокислот из дерново-подзолистой почвы - C270H318O206N16, из чернозема - C260H280O177N15. Фульвокислоты содержат меньше углерода и азота: соответственно от 35 до 50% и от 3 до 4,5%. Изучение распределения металлов в гумусовых кислотах, выделенных из подзолистых почв северо-запада европейской части России, показало, что концентрация меди, цинка, свинца и никеля значительно выше в фульвокислотах. Концентрация тяжелых металлов в гумусовых кислотах подзолистых почв северо-запада европейской части России, мг/кг сухого вещества Гумусовые кислоты Металл Сu Zn Pb N1 Со Mn V Mo Дерново-слабоподзолистая глеевая Гуминовые кислоты Фульвокислоты 6,0 25,0 10,0 100,0 0,2 0,4 1,6 15,0 0,4 0,9 10,0 5,0 40,0 4,0 0,4 Дерново-среднеподзолистая Гуминовые кислоты Фульвокислоты 8,0 15,0 16,0 150,0 0,6 3,0 0,6 5,0 2,0 1,5 2,0 1,5 6,0 0,5 10,0 Подзолистая иллювиально - железистая Гуминовые кислоты Фульвокислоты 6,0 15,0 5,0 20,0 0,2 15,0 0,5 2,0 0,5 2,0 0,5 0,2 2,0 1,0 И.З. Рабинович (1969) определил содержание некоторых тяжелых металлов в гуминовых кислотах, извлеченных из распространенных почв Молдавии. Селективное соединение рассеянных металлов с водорастворимыми компонентами гумуса (фульвокислотами) или с гелями гуминовых кислот имеет важное значение как для вовлечения металлов в миграционные циклы, так и для выведения их из миграции и закрепления в почве. По данным Л.Е. Родина и Н.И. Базилевич, это соотношение имеет наиболее высокое числовое значение (90) в тундровых ландшафтах. С учетом данных К.И. Кобак (1988), Д.С. Орлова и О.Н. Бирюковой (1995, 2001), М.А. Глазовской (1997) можно считать, что масса органического углерода в педосфере (включая углерод залежей торфа, лесных подстилок и устойчивых органоминеральных образований в нижней части профиля почв), по-видимому, близка к 2,5?1012 т. Процесс микробиологического разложения растительных остатков продолжает интенсивно развиваться в почве, причем, по данным О.Н. Бирюковой и Д.С. Орлова (1998), на образование специфических почвенных органических соединений расходуется всего лишь от 0,6 до 4,8% массы углерода, поступившей в почву с опадом, а остальная часть углерода трансформируется в углекислый газ. По мнению Г.А. Заварзина (1984), в общей массе почвенных бактерий связано 6?109 т углерода, что соответствует примерно 12?109 т сухого органического вещества.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?