Применение газовой хроматографии для изучения адсорбционных явлений, термодинамики растворов, фазовых переходов, в кинетике, катализе и при исследовании чрезвычайно малых количеств сорбата. Основные особенности и конструкция хроматографа TRACE GCULTRA.
Аннотация к работе
Газовая хроматография (ГХ) находит также широкое применение для изучения адсорбционных явлений, термодинамики растворов, фазовых переходов, в кинетике, катализе и в других областях науки. В газохроматографическом процессе проявляются малейшие различия в физико-химических свойствах компонентов системы благодаря многократному повторению процессов распределения вещества (сорбата) между неподвижной фазой (жидкость или твердое тело, общий термин - сорбент) и подвижной фазой (газ-носитель). В отличие от аналитической хроматографии, в которой главной задачей является разделение хроматографических пиков с помощью оптимального выбора сорбента и условий эксперимента, при использовании метода ГХ в физической химии применяют сорбаты различного химического строения и объектом исследования является взаимодействие в системесорбат-сорбент. Из величин сорбции получают сведения о физико-химических характеристиках твердых и жидких веществ, включая адсорбенты, катализаторы,полимеры, жидкие кристаллы и, в том числе, лекарственные препараты. В современной газовой хроматографии наиболее широкое применение находят капиллярные колонки с химически привитыми жидкими фазами.При этом сорбат взаимодействует с жидкостью (неподвижной жидкой фазой),растворяясь в последней.Газовая хроматография широко используется и в химии высокомолекулярных соединений, в частности в тех областях, где формы ее применения являются традиционными (определение примесей в мономерах и растворителях для полимеризации, изучение летучих продуктов деструкции и др.). Метод обращенной газовой хроматографии для исследования полимеров получил развитие благодаря работам Гиллета с сотрудниками, показавшими возможность его применения для определения температур стеклования или плавления, степени кристалличности, параметров термодинамического взаимодействия Флори - Хаггинса для систем полимер-растворитель, а также для исследования кинетики кристаллизации полимеров и зрасплава. Время удерживания сорбата в хроматографической колонке есть функция коэффициента распределения вещества между жидкой и газовой фазами, функция коэффициентов адсорбции на поверхности газ - жидкость, газ - твердое тело и жидкость - твердое тело, величины объема колонки, занятой газом и неподвижной фазой, скорости газаносителя, среднего давления в колонке и величиной перепада давления на входе и выходе из колонки.Под действием потока газаносителя молекулы сорбата перемещаются вдоль колонки.Скорость этого перемещения обратно пропорциональна константе распределения их между газовой и неподвижной фазами. В дальнейшем благодаря работам Гиллета с сотрудниками, показавшими, что этим методом можно вычислять температуры стеклования и плакления, степень кристалличности полимеров, исследовать кинетику кристаллизации и главным образом определять параметры термодинамического взаимодействия полимер - растворитель, методом обращенной газовой хроматографии было исследовано большое число полимеров и их растворов в низкомолекулярных растворителях. Предложены модели для описания газохроматографическихп роцессов при различных физических состояниях неподвижной полимерной фазы,позволившие существенно увеличить точность эксперимента и интерпретацию получаемых экспериментальных данных, например при оценке температур стеклования, степени кристалличности, параметров термодинамического взаимодействия в системах полимер - растворитель, полимер - полимер и др.Поскольку значительная часть этих сведений приведена в основном в оригинальных публикациях, а в последние годы метод обращенной газовой хроматографии из-запростоты и доступности находит все большее применение при исследовании полимер.• охлаждение от 450°С до 50° - за 250секунд; • дополнительный термостат для кранов и клапанов позволяет создавать самые сложные схемы, например, при анализе нефтезаводских газов; • автоматическое определение характеристик колонки, что дает возможность поддерживать аналитические условия неизменно оптимальными, даже при старении колонки; •поиск утечек по каналу газаносителя - нажатием одной кнопки; • уникальная конструкция блоков инжектора и детектора делает их легкозаменяемыми; Газовый хроматограф TRACE обеспечивает великолепные характеристики при нагреве и охлаждении термостата, а также высочайшую стабильность температур. Патентованный «on-column» (с вводом пробы непосредственно в колонку) позволяет без проблем работать с термолабильными соединениями избегая их деструкции и дискриминации компонентов образца. Он также обеспечивает работу высоко-объемного испарителя (LVI) Ultra-TRACE,основанного на методике ввода больших объемов пробы, снижая порог обнаружения на два порядка по величине, сокращая время анализа и упрощая подготовку пробы.Широкий выбор модульных устройств и автоматические устройства пробоподготовки и ввода образца значительно повышают производительность анализа и снижают его стоимость. Широкий выбор быстросменяемых ионизационных детекторов позволяет практически моментально приспосабливать этот газовый хроматограф к широчайшему кругу ег
План
СОДЕРЖАНИЕ
Глава 1. Газовая хроматография
Глава 2. Обращенная газовая хроматография
Глава 3. Применение обращенной газовой хроматографии