Оцінка інтегральних зображень узагальненого осесиметричного потенціалу через аналітичні функції комплексної змінної. Редукція деяких крайових задач до інтегральних рівнянь Фредгольма другого роду на дійсній осі за розширених умов на границю області.
Аннотация к работе
Зокрема, якщо m є натуральним числом, то рівняння (1) задовольняють гармонічні функції , визначені в (m 2)-вимірному дійсному просторі , за умови, що вони, так би мовити, "володіють симетрією" відносно осі і розглядаються в меридіанній площині . Доведено пряму теорему стосовно зображень узагальненого осесиметричного потенціалу, де встановлено інтегральний вираз, який кожній голоморфній в функції ставить у відповідність розвязок рівняння (1) на множині {(x,y) D: y 0} при m > 0. Якщо m > 0 і функція F голоморфна в області , то функція: задовольняє рівняння (1) на множині {(x,y) D: y 0}. Ввівши в розгляд функцію u(z):=u(x,y) комплексної змінної z:=x iy, після інтегрування частинами n разів в рівності (2) одержуємо: де - дробова частина числа 1 - m / 2, і інтегрування ведеться вздовж гладких дуг, що належать та зєднують кінці інтегрування), - конктретний многочлен степеня від та , записаний у роботі в явному вигляді. Для кожної функції u(x, y) класу , яка при задовольняє рівняння (1) в області , існує єдина голоморфна функція , яка задовольняє умову: (5) і така, що рівність (2) виконується при всіхУ дисертаційній роботі розглядається рівняння узагальненого осесиметричного потенціалу, яке має фундаментальнее значення в ряді розділів математичного аналізу та математичної фізики. Встановлено інтегральні зображення узагальненого осесиметричного потенціалу через аналітичні функції комплексної змінної, задані в довільній симетричній відносно дійсної осі однозвязній області. Для певних класів узагальнених осесиметричних потенціалів встановлено взаємно однозначну відповідність між ними та аналітичними функціями комплексної змінної, яка задається вказаними інтегральними зображеннями.
Вывод
інтегральний осесиметричний крайовий фредгольм
У дисертаційній роботі розглядається рівняння узагальненого осесиметричного потенціалу, яке має фундаментальнее значення в ряді розділів математичного аналізу та математичної фізики.
Основні результати дисертації такі: 1. Встановлено інтегральні зображення узагальненого осесиметричного потенціалу через аналітичні функції комплексної змінної, задані в довільній симетричній відносно дійсної осі однозвязній області. Для певних класів узагальнених осесиметричних потенціалів встановлено взаємно однозначну відповідність між ними та аналітичними функціями комплексної змінної, яка задається вказаними інтегральними зображеннями.
2. Встановлено достатні умови неперервного продовження інтегральних зображень узагальненого осесиметричного потенціалу на границю області та одержано оцінку локального модуля неперервності їх граничних значень.
3. Здійснено редукцію деяких крайових задач для узагальнених осесиметричних потенціалів до інтегральних рівнянь Фредгольма другого роду на дійсній осі за розширених умов на границю області.
4. Знайдено алгоритм побудови узагальнених осесиметричних потенціалів за компонентами моногенних функцій гіперкомплексної змінної, які будуються в явному вигляді як головні продовження аналітичних функцій комплексної змінної.
Одержані результати та розвинені в ній методи можуть бути використані в теорії узагальнених аналітичних функцій, в теорії крайових задач для розвязків диференціальних рівнянь еліптичного типу з виродженням та їх застосуваннях у математичній фізиці, гідродинаміці, газодинаміці, теплофізиці, механіці та інших прикладних дисциплінах.
Список литературы
1. Grishchuk S.V., Plaksa S.A. On constructions of generalized axial-symmetric potentials by means componens of hypercomplex analytic functions // Зб. праць Ін-ту математики НАН України. -2005.- Т. 2, №.3. - P. 67 - 83.
2. Грищук С.В. О непрерывной продолжимости обобщенных осесимметричных потенциалов на границу области // Зб. праць Ін-ту математики НАН України. - 2006. - Т. 3, №.4. - C. 347 - 357.
3. Грищук С.В., Плакса С.А. Вирази розвязків рівняння Ейлера-Пуассона-Дарбу через компоненти гіперкомплексних аналітичних функцій // Доп. НАН України. - 2006. - № 8. - С. 18 - 24.
4. Грищук С.В., Плакса С.А. Интегральные представления обобщенных осесимметричных потенциалов // Краевые задачи для потенциальных полей / Киев, 2007. - 60 с. - (Препр. / НАН Украины. Ин-т математики; 2007.2). - С. 32 - 59.
5. Grishchuk S.V. Expressions of solutions of the Euler-Poisson-Darboux equation via components of hypercomplex analytic functions // International Workshop on Free Boundary Flows and Related Problems of Analysis (Kiev, September 25-30, 2005): Abstr.- Kiev: Institute of Mathematics of the National Academy of Sciences of Ukraine, 2005.- P. 18 - 20.
6. Grishchuk S.V. Integral expressions of generalized axially-symmetric potentials // Bogolubov Readings 2007 Dedicated to Yu.A. Mitropolskii on the Occasion of His 90-th Birthday (Zhitomir - Kiev, 19 August - 2 September 2007): Abstr.- Kiev: Institute of Mathematics of the National Academy of Sciences of Ukraine, 2007.- P. 28 - 30.