Нейронные сети. Распознавание образов - Курсовая работа

бесплатно 0
4.5 70
Биологический прототип и искусственный нейрон. Распознавание цифр с помощью сетей Хопфилда. Алгоритм функционирования сети. Классификация входного образа. Развитие искусственных нейронных сетей. Исследование возможностей нейронных сетей и их развития.


Аннотация к работе
Изначально сети даются эталонные образы - такие образы, принадлежность которых к определенному классу известна. Затем на вход сети подается некоторый неизвестный образ, и сеть пытается по определенному алгоритму соотнести его с каким-либо эталонный образом. Во многих случаях это приводит к необходимости отказа от биологического правдоподобия, мозг становится просто метафорой, и создаются сети, невозможные в живой материи или требующие неправдоподобно больших допущений об анатомии и функционировании мозга. Когда суммарное возбуждение в теле нейрона превышает некоторый порог, нейрон возбуждается, посылая по аксону сигнал другим нейронам. Так как сети с обратными связями имеют пути, передающие сигналы от выходов к входам, то отклик таких сетей является динамическим, т. е. после приложения нового входа вычисляется выход и, передаваясь по сети обратной связи, модифицирует вход.В настоящее время многие ученые занимаются исследованием нейронных сетей, устойчивости тех или иных конфигураций, однако далеко не все задачи распознавания образов могут быть решены нейронными сетями.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?