Неусталені хвильові процеси у неоднорідних середовищах із плоскою границею розподілу - Автореферат

бесплатно 0
4.5 159
Методи рішення вісісиметричних і плоских крайових задач теорії пружності для різних моделей неоднорідних середовищ. Чисельні дослідження з метою установлення фізико-механічних закономірностей напружено-деформівного стану границі розподілу середовищ.


Аннотация к работе
Незважаючи на те, що багато явищ у природі - землетруси, цунамі, удари, або обумовлені діяльністю людини, наприклад, підземні вибухи, моделюються саме за допомогою імпульсних крапкових навантажень, вивченню нестаціонарних хвильових процесів приділялося менше уваги, у порівнянні з задачами зі стаціонарним навантаженням. Метою дослідження в дисертаційній роботі є вивчення закономірностей поширення хвиль при неусталених режимах у пружному півпросторі від нестаціонарних джерел різних типів, а також у пружному півпросторі, що знаходиться в контакті з акустичним середовищем, при цьому особлива увага приділяється випадку руху “верхнього” акустичного середовища. Обєктом дослідження є наступні моделі неоднорідних середовищ: пружний півпростір; пружний півпростір, що знаходиться в контакті з напівнескінченним акустичним середовищем; пружний півпростір, що знаходиться в контакті з рухомим акустичним середовищем, зокрема, шаром. Предметом дослідження є розробка методів розрахунку й аналіз пружних хвильових полів у неоднорідних середовищах із плоскою границею розподілу при дії нестаціонарних точкових і лінійних джерел різних типів, як зовнішніх (діючих на поверхні півпростору, включаючи точкове рухоме навантаження), так і внутрішніх (діючих на деякій глибині). Розглядаються хвильові процеси від точкових джерел різних типів: внутрішні сферичні джерела обємних хвиль - джерело P - хвиль (джерело розширення), джерело SV - хвиль; сферичні і циліндричні джерела обємних швидкостей (акустичні); зосереджені сили (включаючи рухоме навантаження), прикладені до границі розподілу середовищ.У вступі обґрунтовано актуальність теми; сформульовано мету і задачі досліджень дисертаційної роботи; приведено основні результати, що виносяться на захист; викладено короткий зміст роботи по розділах; зазначено наукову новизну і практичне значення отриманих результатів; наводиться звязок роботи з науковими темами і планами; охарактеризовано особистий внесок автора в спільні публікації. Зокрема, говориться про відсутність відомих робіт, у яких, наприклад, приводилися б розрахунки точних (однаково прийнятних як у ближній, так і в дальній зоні) рішень просторової задачі про глибинне джерело поздовжніх хвиль; недостатні дослідження пружних хвильових полів у системі пружний півпростір - рухоме акустичне середовище; відзначається відсутність досліджень задачі про рух силового джерела в нестаціонарній постановці. Наприклад, джерело P - хвиль у циліндричній системі координат можна представити у вигляді потенціалу обємної сили , так що: ,(1) де - деяка константа, що характеризує потужність джерела, - часова залежність джерела. Показано, що рішення для пружних зсувів на поверхні, у випадку довільної часової залежності можна точно визначити у вигляді згортки з передатною функцією : де ; ( - правобічна границя) характеризують відповідно відгуки на джерела з імпульсними часовими залежностями і де , , - безрозмірний час приходу поздовжньої хвилі. Це обумовлено наступними міркуваннями: по-перше, у цьому випадку є можливість одержання аналітичного рішення для вертикального компонента зсувів на поверхні і, таким чином, може бути отримано тестове рішення для чисельних розрахунків інтегралів по шляху Каняра вісісиметричних задач, що використовувалися в роботі; по-друге, ця задача також є тестовою при проведенні чисельних розрахунків задачі Лемба, розглянутої в даному розділі, де пружний півпростір знаходиться в контакті з акустичним середовищем, так що при наближенні параметра щільності акустичного середовища до нуля (вакуум) можна одержати рішення задачі Лемба для півпростору; по-третє, рішення цієї задачі дає можливість одержання функції Гріна (відгуку на дельта - імпульс) у замкнутому вигляді для вертикального компонента зсувів на поверхні, що дозволяє одержати аналітичне рішення задачі про рухоме навантаження, використовуючи згортку.

План
ОСНОВНИЙ ЗМІСТ РОБОТИ
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?