Економічна постановка задачі нелінійного програмування. Геометрична інтерпретація задачі нелінійного програмування. Основні труднощі розв’язування задач. Класичний метод оптимізації. Метод множників Лагранжа. Умовний та безумовний екстремуми функції.
Аннотация к работе
Якщо всі функції та , є лінійними, то це задача лінійного програмування, інакше (якщо хоча б одна з функцій є нелінійною) маємо задачу нелінійного програмування. Функція Z має два локальних мінімуми: в точці А( ), і в точці В( ). Нагадаємо, що необхідна умова існування локального екстремуму функції двох змінних формулюється так: для того, щоб точка була точкою локального екстремуму, необхідно, щоб функція була неперервною і диференційовною в околі цієї точки і перші частинні похідні за змінними та у цій точці дорівнювали нулю: . Тоді, якщо , то в точці функція має екстремум, причому, якщо , тоді - точка локального максимуму функції , а якщо , тоді - точка локального мінімуму функції . Якщо задача полягає у відшуканні локального чи глобального екстремуму деякої функції за умови, що на змінні такої функції накладаються додаткові обмеження, то маємо задачу пошуку умовного екстремуму функції.