Моделирование методом Монте-Карло - Контрольная работа

бесплатно 0
4.5 63
История рождения метода Монте-Карло. Особенности решения задач, построения алгоритмов и интегрирования, в условиях которых присутствует элемент неопределенности при помощи метода Монте-Карло. Геометрический алгоритм моделирования методом Монте-Карло.


Аннотация к работе
Метод статистического моделирования или метод Монте-Карло назван так в честь столицы княжества Монако, известной своими многочисленными казино, в которых публика растрачивает или увеличивает свои доходы согласно законам распределения случайных величин. Этот метод позволяет решать задачи, в условиях которых присутствует элемент неопределенности (например, при подбрасывании монеты может выпасть “орел” или “решка”). Все или почти все различные исходы (с учетом, когда монета может упасть на ребро) проявятся, если многократно рассмотреть случайное развитие одного и того же начального состояния (смоделировать некоторое количество историй - N). Pascal для этого используется стандартная функция RANDOM. Для отладки программы бывает важно уметь воспроизвести псевдослучайные числа, а для генерации другой последовательности случайных чисел используется процедура RANDOMIZE. x, y, z, j: Integer;. Inc(Rounds);.Сначала Энрико Ферми в 1930-х годах в Италии, а затем Джон фон Нейман и Станислав Улам в 1940-х в Лос-Аламосе предположили, что можно использовать связь между стохастическими процессами и дифференциальными уравнениями «в обратную сторону». Идея была развита Уламом, который, раскладывая пасьянсы во время выздоровления после болезни, задался вопросом, какова вероятность того, что пасьянс сложится. Он же предложил использовать компьютеры для расчетов методом Монте-Карло.Рисунок 2. Численное интегрирование функции детерминистическим методом.Обычный алгоритм Монте-Карло интегрирования. Рассмотрим случайную величину , равномерно распределенную на отрезке интегрирования .Рисунок 3. Численное интегрирование функции методом Монте-Карло. Для определения площади под графиком функции можно использовать следующий стохастический алгоритм: · ограничим функцию прямоугольником (n-мерным параллелепипедом в случае многих измерений), площадь которого можно легко вычислить; любая сторона прямоугольника содержит хотя бы 1 точку графика функции, но не пересекает его;. Моделирование по методу Монте-Карло представляет собой автоматизированную математическую методику, предназначенную для учета риска в процессе количественного анализа и принятия решений.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?