Математические методы в принятии решений - Реферат

бесплатно 0
4.5 76
Принятие решений как особый процесс человеческой деятельности, направленный на выбор наилучшего варианта действий. Особенности применения математических методов в данном процессе. Принципы оптимизации в математике, их эффективность. Содержание теории игр.


Аннотация к работе
Во-первых, математические методы принятия решений для задач, связанных с различными направлениями деятельности человека, начинают взаимное проникновение друг в друга, например, оптимизационные задачи управления при переходе от непрерывных переменных к дискретным становятся задачами математического (линейного) программирования, оценка разделяющей функции в статистических методах принятия решений может проводиться с помощью процедур линейного или квадратичного программирования и т.д. Игра образуется игроками, набором стратегий для каждого игрока и указания выигрышей, или платежей, игроков для каждой комбинации стратегий. Экстенсивная форма очень наглядна, с ее помощью особенно удобно представлять игры с более чем двумя игроками и игры с последовательными ходами. В примере справа, если игрок 1 выбирает первую стратегию, а второй игрок - вторую стратегию, то на пересечении мы видим (-1,-1), это значит, что в результате хода оба игрока потеряли по одному очку. Формально игра в такой форме (также называемая TU-игрой) представляется парой (N, v), где N - множество всех игроков, а v: 2N > R - это характеристическая функция.Из вышеперечисленных методов наибольшее применение получили вероятностно-статистические и теория игр.

Вывод
Из вышеперечисленных методов наибольшее применение получили вероятностно-статистические и теория игр. Вероятностно-статистические методы по сравнению с другими наиболее доступен и дешев для использования и установки базы программного обеспечения. Так, применительно для прогнозов (например, регрессионного анализа) и оптимизации возможно использовать стандартный пакет программы Microsoft Office Excel.

Теория игр значительно более дорогой метод, меньше изучен с точки зрения научной основы и требует высококвалифицированных кадров. Однако, в областях особой значимости (политика, мировые финансовые компании, ТНК) оправдан и необходим.

Список литературы
1. А.А. Грешилов, Математические методы принятия решений, 2-е издание, исправленное и дополненное, Москва, 2014

2. Мазалов В.В. Математическая теория игр и приложения. - Санкт-Петербург - Москва - Краснодар: Лань, 2010.

3. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979.

4. Орлов А.И. Прикладная статистика. Учебник, 2009

5. Орлов А.И. Эконометрика. Учебник для вузов. Изд. 3-е, исправленное и дополненное. - М.: Изд-во «Экзамен», 2004.

6. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. Пер. с англ. - М.: Мир, 1985.

7. Жиглявский А.А., Жилинкас А.Г. Методы поиска глобального экстремума. - М.: Наука, Физматлит, 1991.

8. Кини Р.Л., Райфа Х. Принятие решений при многих критериях: предпочтения и замещения. - М.: Радио и связь, 1981

9. Бодров В.И., Лазарева Т.Я., Мартемьянов Ю.Ф. Математические методы принятия решений. Учебное пособие. - Тамбов: Изд-во ТГТУ, 2004

10. Петросян Л.А. Зенкевич Н.А., Семина Е.А. Теория игр: Книжный дом «Университет», 1998.

Размещено на
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?