Метод відношення правдоподібності для великих вибірок як один із способів перевірки параметричних статистичних гіпотез. Теоретичне обґрунтування даної методики, визначення її основних недоліків та програмне тестування припущення розглянутого критерію.
Аннотация к работе
Текст програми, що реалізує застосування критерію відношення правдоподібності для великих вибірокМатематична статистика - це один з розділів математики, що має широке прикладне значення в науці і техніці. Зокрема, методи математичної статистики широко використовуються в теорії масового обслуговування, теорії надійності, теорії інформації, стохастичній апроксимації та інших дисциплінах. Причиною виникнення цієї теорії стала проблема визначення закономірностей розподілу випадкових величин( їхніх функцій та щільностей розподілу), основних характеристик( математичного сподівання, дисперсії та ін.), залежностей між випадковими величинами. Як зрозуміло із самої назви, теорія перевірки статистичних гіпотез займається розробкою та обґрунтуванням методів перевірки статистичних гіпотез. Під статистичною гіпотезою розуміють припущення щодо виду розподілу випадкової величини, незалежності випадкових величин, значень невідомих параметрів розподілу та ін. на основі експериментальних статистичних даних.Через будемо позначати функцію, що визначена на деякому ймовірнісному просторі і називається випадковою величиною, де це непорожня множина, що називається простором елементарних подій, а елементи називаються елементарними подіями(вважається, що складається з усіх можливих результатів експерименту і результатом будь-якого експерименту може бути лише один елемент ); це деяка система підмножин , яка утворює алгебру, тобто для неї виконується така система умов: 1) Тоді множини називаються подіями. це відображення подій на інтервал , яке задовольняє наступним аксіомам: 1) поставлено у відповідність число і називається ймовірністю події Нехай в результаті проведення експерименту спостерігаються значення випадкових величин Тоді вектор, компонентами якого є ці випадкові величини , називається вибіркою, а обємом вибірки. Тоді ймовірність того, що випадкова величина приймає значення менше за називається функцією розподілу ймовірностей випадкової величини і позначається Якщо функція розподілу залежить від деякого параметра , то писатимемо Клас функцій розподілу називатимемо класом допустимих розподілів спостережуваної випадкової величини і позначатимемо . Статистика називається незміщеною оцінкою параметра , якщо (тут - це математичне сподівання, тобто , якщо випадкова величина має неперервну функцію розподілу( у цьому випадку у точках існування похідної, і називається функцією щільності ), і у дискретному випадку( тобто набуває не більш, ніж зліченної кількості значень відповідно з ймовірностями , не більш, ніж зліченна множина і )).Одним із найбільш універсальних методів побудови критеріїв перевірки складних гіпотез є метод відношення правдоподібності, суть якого полягає у наступному. Для перевірки гіпотези проти альтернативи вводиться статистика відношення правдоподібності де , функція правдоподібності. Разом із статистикою вводиться статистика Якщо справедлива гіпотеза , то в силу спроможності оцінки максимальної правдоподібності при великих точка близька до , тому для можна записати розклад Тейлора відносно точки : де Звідси випливає, що Оскільки слушна оцінка для , а другі похідні функції правдоподібності, за припущенням, неперервні по , то справедливо: На основі закону великих чисел при величина збігається за ймовірністю( за розподілом ) до середнього значення Звідси слідує, що випадковий вектор має в границі такий же розподіл, як і нормальний випадковий вектор Таким чином, права частина (3) має в границі такий розподіл, як і квадратична форма .Розглянемо декілька прикладів на застосування розглянутого критерію. Для розвязку задачі застосуємо критерій відношення правдоподібності для великих вибірок. Отже, перевіримо просту гіпотезу , тоді альтернативна гіпотеза тут У нашому випадку , тоді статистика критерію Для заданого рівня значущості знаходимо критичну точку (див. Отже, отримали, що при даній реалізації вибірки статистика критерію отримала значення , яке менше критичного значення , тобто гіпотеза приймається, а тому відсоток браку можна вважати таким, що рівний .Використовуючи програму, код модуля якої наведений у додатку B, можна розвязувати задачі на узгодженість простої параметричної гіпотези із реалізаціями великих вибірок. Перевірка узгодженості проводиться на основі критерію відношення правдоподібності для великих вибірок. Програма коректно працює на IBM - сумісних компютерах з такими характеристиками: Celeron 2.26/MB ASUS P4VM-800 /DDR 1.5Gb PC3200/ HDD 330 Gb 7200 rpm/ Radeon 9250 128/128, під операційною системою - Windows XP Professional SP3 із встановленим програмним забезпеченням - середовищем розробки - Delphi 7. У третьому випадку програма сама генерує вибірку з нормального розподілу і перевіряється гіпотеза про значення математичного сподівання і дисперсії цього розподілу, причому на формі вказується значення математичного сподівання, дисперсії і рівня значущості.У курсовій роботі було розглянуто один із критеріїв відношення правдоподібності, а саме: критерій відношення правдоподібності для великих вибірок, й
План
Зміст
Вступ
1. Основні поняття
2. Критерій відношення правдоподібності для великих вибірок
3. Приклади застосування критерію відношення правдоподібності для великих вибірок