Понятие теплообменника, его основные функции и цели использования. Сущность теплообмена и характеристика основных видов передачи тепла: теплопроводность, конвекция, излучение. Описание основных составляющих керосина, его типы. Главные свойства воды.
Теплообменниками называются аппараты, в которых происходит теплообмен между рабочими средами независимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, конденсаторы, пастеризаторы, испарители, деаэраторы, экономайзеры). В химических производствах до 70% теплообменных аппаратов применяют для сред жидкость - жидкость и пар - жидкость при давлении до 1 МПА и температуре до 200 °С. Однако коэффициент унификации узлов и деталей размерного ряда этих аппаратов, являющийся отношением числа узлов и деталей (размеры одинаковы для всего ряда) к общему числу узлов и деталей данного размерного ряда, составляет примерно 0,13. Интенсивностью процесса или удельной тепловой производительностью теплообменного аппарата называется количество теплоты, передаваемого в единицу времени через единицу поверхности теплообмена при заданном тепловом режиме. На интенсивность и эффективность влияют также форма поверхности теплообмена: эквивалентный диаметр и компоновка каналов, обеспечивающие оптимальные скорости движения сред; средний температурный напор; наличие турбулизирующих элементов в каналах; оребрение.В зависимости от вида рабочих сред различаются теплообменники: а) жидкостно-жидкостные - при теплообмене между двумя жидкими средами; Кожухотрубчатые теплообменные аппараты с неподвижными трубными решетками и с поперечными перегородками в межтрубном пространстве, применяемые в химической, нефтяной и других отраслях промышленности, обозначаются индексами и классифицируются: - по назначению (первая буква индекса): Т - теплообменники; Х - холодильники; К - конденсаторы; И - испарители; Один из теплоносителей в этих аппаратах движется по трубам, другой - в межтрубном пространстве, ограниченном кожухом и наружной поверхностью труб. Для уменьшения количества теплоносителя, проходящего между трубным пучком и кожухом, в этом пространстве устанавливают специальные заполнители, например приваренные к кожуху продольные полосы или глухие трубы, которые не проходят через трубные решетки и могут быть расположены непосредственно у внутренней поверхности кожуха. Не закрепленная на кожухе вторая трубная решетка вместе с внутренней крышкой, отделяющей трубное пространство от межтрубного, образует так называемую плавающую головку Такая конструкция исключает температурные напряжения в кожухе и в трубах.
Введение
Теплообменниками называются аппараты, в которых происходит теплообмен между рабочими средами независимо от их технологического или энергетического назначения (подогреватели, выпарные аппараты, конденсаторы, пастеризаторы, испарители, деаэраторы, экономайзеры).
Технологическое назначение теплообменников многообразно. Обычно различаются собственно теплообменники, в которых передача тепла является основным процессом, и реакторы, в которых тепловой процесс играет вспомогательную роль.
В химических производствах до 70% теплообменных аппаратов применяют для сред жидкость - жидкость и пар - жидкость при давлении до 1 МПА и температуре до 200 °С. Для указанных условий разработаны и серийно изготовлены теплообменные аппараты общего назначения кожухотрубчатого и спирального типов.
В последнее время получают распространение пластинчатые теплообменные аппараты общего назначения. Одним из преимуществ трубчатых теплообменных аппаратов является простота конструкции. Однако коэффициент унификации узлов и деталей размерного ряда этих аппаратов, являющийся отношением числа узлов и деталей (размеры одинаковы для всего ряда) к общему числу узлов и деталей данного размерного ряда, составляет примерно 0,13. В то же время этот коэффициент применительно к пластинчатым теплообменным аппаратам составляет 0,9.
Достоинством кожухотрубчатого холодильника-конденсатора является возможность получения значительной поверхности теплообмена при сравнительно небольших габаритах и хорошо освоенная; недостатком - более высокий расход материала по сравнению с некоторыми современными типами теплообменных аппаратов (спиральными, пластинчатыми теплообменниками.
По оценкам экспертов на изготовление трубчатых теплообменников расходуется около трети всего металла, потребляемого машиностроением.
Поэтому разработка методов интенсификации теплообмена способствующих снижению массы теплообменников, экономии материалов, является актуальной проблемой, которой занимаются специалисты многих стран. Одним из наиболее простых и эффективных путей интенсификации теплообмена является изменение формы и режима движения теплоносителя.
При созданиях новых, более эффективных теплообменных аппаратов стремятся, во-первых, уменьшить удельные затраты материалов, труда, средств и затрачиваемой при работе энергии по сравнению с теми же показателями существующих теплообменников.
Удельными затратами для теплообменных аппаратов называют затраты, отнесенные к тепловой производительности в заданных условиях, во-вторых, повысить интенсивность и эффективность работы аппарата. Интенсивностью процесса или удельной тепловой производительностью теплообменного аппарата называется количество теплоты, передаваемого в единицу времени через единицу поверхности теплообмена при заданном тепловом режиме.
Интенсивность процесса теплообмена характеризуется коэффициентом теплопередачи. На интенсивность и эффективность влияют также форма поверхности теплообмена: эквивалентный диаметр и компоновка каналов, обеспечивающие оптимальные скорости движения сред; средний температурный напор; наличие турбулизирующих элементов в каналах; оребрение.
Кроме конструктивных методов интенсификации процесса теплообмена существует режимные методы, связанные с изменением гидродинамических параметров и режима течения жидкости у поверхности теплообмена.
Режимные методы включают: подвод колебаний к поверхности теплообмена, создание пульсации потоков, вдувание газа в поток либо отсос рабочей среды через пористую стенку, наложении электрических или магнитных полей на поток, предотвращения загрязнений поверхности теплообмена путем сильно турбулизации потока. [1, 3] теплообменник конвекция керосин
1. Технологическая часть
1.1 Сущность и назначение процесса теплообмена
Теплообмен - физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к более холодному, что является следствием второго закона термодинамики (однако возможно передать тепло от холодного тела с помощью вспомогательных устройств, таких как холодильник). Теплопередачу невозможно остановить, возможно только замедлить ее.
Всего существует три простых (элементарных) вида передачи тепла: -теплопроводность;
-конвекция;
-тепловое излучение;
Существуют также различные виды сложного переноса тепла, которые являются сочетанием элементарных видов. Основные из них: -теплоотдача (конвективный теплообмен между потоками жидкости или газа и поверхностью твердого тела);
-теплопередача (теплообмен от горячей жидкости к холодной через разделяющую их стенку);
-конвективно-лучистый перенос тепла (совместный перенос тепла излучением и конвекцией).
Теплопроводность - это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передается другому телу при их взаимодействии или передается из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.
Конвекция - явление переноса теплоты в жидкостях или газах путем перемешивания самого вещества (как вынужденно, так и самопроизвольно). Существует естественная конвекция, которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции, нижние слои вещества нагреваются, становятся легче и всплывают вверх, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решетка из конвекционных ячеек. Различают ламинарную и турбулентную конвекцию.
При вынужденной (принудительной) конвекции перемещение вещества обусловлено действием каких-то внешних сил (насос, лопасти вентилятора и т. п.). Она применяется, когда естественная конвекция является недостаточно эффективной.
Тепловое излучение - электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счет его внутренней энергии (в отличие, например, от люминесценции, возникающей за счет внешних источников энергии). В физике для корректного расчета теплового излучения принята модель абсолютно черного тела, тепловое излучение которого описывается законом Стефана - Больцмана. [1, 4]
1.2 Физико-химические свойства сырья и продуктов
Керосин - смеси углеводородов (от C12 до C15), выкипающие в интервале температур 150-250 °C, прозрачная, бесцветная (или слегка желтоватая), слегка маслянистая на ощупь, горючая жидкость, получаемая путем прямой перегонки или ректификации нефти.
Плотность 0,78-0,85 г/см? (при 20 °C), вязкость 1,2-4,5 мм?/с (при 20 °C), температура вспышки 28-72 °C, теплота сгорания ок. 43 МДЖ/кг.
В зависимости от химического состава и способа переработки нефти, из которой получен керосин, в его состав входят: предельные алифатические углеводороды - 20-60 % афтеновые углеводороды 20-50 % бициклические ароматические 5-25 % непредельные углеводороды - до 2 % примеси сернистых, азотистых или кислородных соединений.
Керосин применяют как реактивное топливо, горючий компонент жидкого ракетного топлива, горючее при обжиге стеклянных и фарфоровых изделий, для бытовых нагревательных и осветительных приборов, в аппаратах для резки металлов, как растворитель (например для нанесения пестицидов), сырье для нефтеперерабатывающей промышленности. Керосин может использоваться как заменитель зимнего и арктического дизтоплива для дизельных двигателей, однако необходимо добавить противоизносные и цетаноповышающие присадки; цетановое число керосина около 40, ГОСТ требует не менее 45. Для многотопливных двигателей (на основе дизельного двигателя) возможно кратковременное применение чистого керосина и даже бензина АИ-80. Зимой допускается добавление до 20 % керосина в летнее дизельное топливо для снижения температуры застывания, при этом не ухудшаются эксплуатационные характеристики. Также керосин - основное топливо для проведения фаер-шоу (огненных представлений), изза хорошей впитываемости и относительно низкой температуры горения. Применяется также для промывки механизмов, для удаления ржавчины.
Список литературы
1. Адельсон С.В. Процессы и аппараты нефтепереработки и нефтехимии. М.: ГОСТОПТЕХИЗДАТ, 1963, -311 с.
2. Дытнерский Ю.И. Основные процессы и аппараты химической технологии. М.: Химия, 1991 ,- 496 c.
3. Касаткин А.Г. Оновные процессы и аппараты химической технологии. М.:Химия, 1971, - 753 с.
4. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987, -576 с.
5. Плановский А.Н. Процессы и аппараты химической технологии.
М.: Химия, 1967, - 848 с.
6. Лазарева Н.В., Левиной Э.Н. Вредные вещества в промышленности. Химия, 1976, Размещено на .ru
Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность своей работы