Композиционные материалы - Реферат

бесплатно 0
4.5 47
Определение понятия и классификация композиционных материалов (полимерные, углеродные, керамические, армированные). Изучение методов их получения. Характеристика состава, строения и свойства, экономическая эффективность применения в строительстве.


Аннотация к работе
Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях. Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией.Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодисперсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне-и хим. стойкость. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длинны волокна к диаметру относительно невелико, и с непрерывным волокном.Основные требования, предъявляемые к любому методу изготовления композиций, состоят в максимальном сохранении исходной прочности волокон, обеспечении их хорошей ориентации в матрице и создании условий для прочного соединения составляющих. Повышенное содержание нитевидных кристаллов и волокон в матрице может быть достигнуто посредством ориентирования и осаждения волокон на металлической подложке, сборки слоев таких подложек в предварительную заготовку, диффузионной сварки этой заготовки до получения фольги из композиционного материала и последующего нагрева изготовленной композиции до температуры на 28°C-55°C выше точки плавления матрицы с приложением незначительного давления. Метод горячего прессования листов матричного материала с расположенными между ними волокнами осуществляется в вакууме или на воздухе и позволяет получать изделия с хорошей ориентацией упрочняющих элементов. Прокатка поперек волокон и прессование применялись для изготовления композиций на основе алюминиевых, никелевых и титановых сплавов, упрочненных волокнами из нержавеющих сталей, бора и вольфрама. Этими методами получены композиционные материалы с равномерным распределением металлических волокон и высокими прочностными свойствами композиций.Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, фенолоформальдегидных, полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и др. волокнами; металлические композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой; композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SIC. При использовании углеродных, стеклянных, амидных и борных волокон, содержащихся в материале в колве 50-70%, созданы композиции с удельной прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов.Они применяются в авиации для высоконагруженных деталей (обшивки, лонжеронов, нервюр, панелей, лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных соо

План
Содержание

Введение

1. Классификация композиционных материалов

2. Методы получения композиционных материалов

3. Состав, строение и свойства композиционных материалов

4. Экономическая эффективность применения композиционных материалов

Список использованной литературы

Введение
В начале XXI века задаются вопросом о будущих строительных материалах. Бурное развитие науки и техники затрудняет прогнозирование: еще четыре десятилетия назад не было широкого применения полимерных строительных материалов, а о современных «истинных» композитах было известно только узкому кругу специалистов. Тем не менее, можно предположить, что основными строительными материалами также будут металл, бетон и железобетон, керамика, стекло, древесина, полимеры. Строительные материалы будут создаваться на той же сырьевой основе, но с применением новых рецептур компонентов и технологических приемов, что даст более высокое эксплуатационное качество и соответственно долговечность и надежность. Будет максимальное использование отходов различных производств, отработавших изделий, местного и домашнего мусора. Строительные материалы будут выбираться по экологическим критериям, а их производство будет основываться на безотходных технологиях.

Уже сейчас имеется обилие фирменных названий отделочных, изоляционных и других материалов, которые в принципе отличаются только составом и технологией. Этот поток новых материалов будет увеличиваться, а их эксплуатационные свойства совершенствоваться с учетом суровых климатических условий и экономии энергетических ресурсов России.

После того как современная физика металлов подробно разъяснила нам причины их пластичности, прочности и ее увеличения, началась интенсивная систематическая разработка новых материалов. Это приведет, вероятно, уже в вообразимом будущем к созданию материалов с прочностью, во много раз превышающей ее значения у обычных сегодня сплавов.

Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик.

Преимущества композиционных материалов: -высокая удельная прочность;

-высокая жесткость (модуль упругости 130…140 ГПА);

-высокая износостойкость;

-высокая усталостная прочность;

Из КМ возможно изготовить размеростабильные конструкции, причем, разные классы композитов могут обладать одним или несколькими преимуществами.

Наиболее частые недостатки композиционных материалов: -высокая стоимость;

-анизотропия свойств;

-повышенная наукоемкость производства, необходимость специального дорогостоящего оборудования и сырья, а, следовательно, развитого промышленного производства и научной базы страны.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?