Композиционные материалы - Реферат

бесплатно 0
4.5 47
Классификация композиционных материалов: на полимерной, металлической и неорганической (керамической) матрице. Состав, строение и свойства композита и прогнозирование его свойств. Основные критерии сочетания компонентов и их экономическая эффективность.


Аннотация к работе
Композиционный материал - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу, обеспечивающую совместную работу армирующих элементов. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик. В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.Композиты - многокомпонентные материалы, состоящие из полимерной, металлической., углеродной, керамической или др. основы (матрицы), армированной наполнителями из волокон, нитевидных кристаллов, тонкодисперсных частиц и др. Путем подбора состава и свойств наполнителя и матрицы (связующего), их соотношения, ориентации наполнителя можно получить материалы с требуемым сочетанием эксплуатационных и технологических свойств. По структуре наполнителя композиционные материалы подразделяют на волокнистые (армированы волокнами и нитевидными кристаллами), слоистые (армированы пленками, пластинками, слоистыми наполнителями), дисперсноармированные, или дисперсноупрочненные (с наполнителем в виде тонкодисперсных частиц). Матрица в композиционных материалах обеспечивает монолитность материала, передачу и распределение напряжения в наполнителе, определяет тепло-, влаго-, огне-и хим. стойкость. Композиционные материалы с волокнистым наполнителем (упрочнителем) по механизму армирующего действия делят на дискретные, в которых отношение длинны волокна к диаметру относительно невелико, и с непрерывным волокном.Можно создать материалы как с изотропными, так и с анизотропными свойствами. Можно укладывать волокна под разными углами, варьируя свойства композиционных материалов. От порядка укладки слоев по толщине пакета зависят изгибные и крутильные жесткости материала. К ним относят: полимерные композиционные материалы на основе термореактивных (эпоксидных, полиэфирных, фенолоформальдегидных, полиамидных и др.) и термопластичных связующих, армированных стеклянными (стеклопластики), углеродными (углепластики), органическими (органопластики), борными (боропластики) и др. волокнами; металлические композиционные материалы на основе сплавов Al, Mg, Cu, Ti, Ni, Сг, армированных борными, углеродными или карбидкремниевыми волокнами, а также стальной, молибденовой или вольфрамовой проволокой; композиционные материалы на основе углерода, армированного углеродными волокнами (углерод-углеродные материалы); композиционные материалы на основе керамики, армированной углеродными, карбидокремниевыми и др. жаростойкими волокнами и SIC. При использовании углеродных, стеклянных, амидных и борных волокон, содержащихся в материале в колве 50-70%, созданы композиции с удельной прочностью и модулем упругости в 2-5 раз большими, чем у обычных конструкционных материалов и сплавов.Они применяются в авиации для высоконагруженных деталей (обшивки, лонжеронов, нервюр, панелей, лопаток компрессора и турбины и т. д.), в космической технике для узлов силовых конструкций аппаратов, для элементов жесткости, панелей, в автомобилестроении для облегчения кузовов, рессор, рам, панелей кузовов, бамперов и т. д., в горной промышленности (буровой инструмент, детали комбайнов и т. д.), в гражданском строительстве (пролеты мостов, элементы сборных конструкций высотных сооружений и т. д.) и в других областях народного хозяйства. Применение композиционных материалов обеспечивает новый качественный скачек в увеличении мощности двигателей, энергетических и транспортных установок, уменьшении массы машин и приборов. Композиционные материалы с неметаллической матрицей, а именно полимерные карбоволокниты используют в судо-и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ.

План
Содержание

Введение

1. Классификация композиционных материалов

2. Состав, строение и свойства композиционных материалов

3. Экономическая эффективность применения композиционных материалов

Список использованной литературы

Введение
Композиционный материал - неоднородный сплошной материал, состоящий из двух или более компонентов, среди которых можно выделить армирующие элементы, обеспечивающие необходимые механические характеристики материала, и матрицу, обеспечивающую совместную работу армирующих элементов. Механическое поведение композита определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связи между ними. Эффективность и работоспособность материала зависят от правильного выбора исходных компонентов и технологии их совмещения, призванной обеспечить прочную связь между компонентами при сохранении их первоначальных характеристик. В результате совмещения армирующих элементов и матрицы образуется комплекс свойств композита, не только отражающий исходные характеристики его компонентов, но и включающий свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композитах, в отличие от металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Преимущества композиционных материалов: -высокая удельная прочность;

-высокая жесткость (модуль упругости 130…140 ГПА);

-высокая износостойкость;

-высокая усталостная прочность;

Из КМ возможно изготовить размеростабильные конструкции, причем, разные классы композитов могут обладать одним или несколькими преимуществами.

Наиболее частые недостатки композиционных материалов: -высокая стоимость;

-анизотропия свойств;

-повышенная наукоемкость производства, необходимость специального дорогостоящего оборудования и сырья, а следовательно развитого промышленного производства и научной базы страны.

Список литературы
1. Горчаков Г.И., Баженов Ю.М. Строительные материалы/ Г.И. Горчаков, Ю.М. Баженов. - М.: Стройиздат, 1986.

2. Строительные материалы / Под ред.В.Г. Микульского. - М.: АСВ, 2000.

3. Общий курс строительных материалов / Под ред. И.А. Рыбьева. - М.: Высшая школа, 1987.

4. Строительные материалы / Под ред.Г.И. Горчакова. - М: Высшая школа, 1982.

5. Эвальд В.В. Строительные материалы, их изготовление, свойства и испытания/ В.В. Эвальд. - С-Пб.: Л-М, 14-ое изд.,1933.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?