Комплексные соединения в аналитической химии - Курсовая работа

бесплатно 0
4.5 84
Тип гибридизации атомных орбиталей комплексообразователя и структура внутренней сферы комплексного соединения. Кислотно-основные свойства соединений, их образование, трансформация или разрушение, диссоциация в растворах. Комплексонометрическое титрование.


Аннотация к работе
Обширную группу химических соединений составляют комплексы, в молекулах которых всегда можно выделить центральный атом или ион, вокруг которого сгруппированы другие ионы или молекулярные группы. Комплексы имеют исключительно большое значение в живой и неживой природе. Значительную часть природных минералов, в том числе многие силикаты и полиметаллические руды, также составляют комплексы. Современная химическая промышленность широко использует комплексы как катализаторы.В живых организмах присутствуют комплексные соединения биогенных металлов с белками, витаминами и другими веществами, играющими роль ферментов или выполняющими специфические функции в обмене веществ. Поэтому сущность реакции комплексообразования заключается во взаимодействии двух противоположностей: акцептора электронной пары и донора электронной пары. Комплексные соединения состоят из комплексообразователя и лигандов, образующих внутреннюю сферу, и внешней сферы, состоящей из ионов, которые компенсируют заряд внутренней сферы. Комплексообразователь (центральный атом) - атом или ион, который является акцептором электронных пар, предоставляя свободные атомные орбитали, и занимает центральное положение в комплексном соединении. Роль комплексообразователя в основном выполняют атомы или ионы d-и f-металлов, так как они имеют много свободных атомных орбиталей на валентном уровне и достаточно большой положительный заряд ядра, за счет которого способны притягивать электронные пары доноров.В образовании химической связи во внутренней сфере комплексного соединения важнейшую роль играет донорно-акцепторное взаимодействие лигандов и комплексообразователя. Именно этим объясняются главные особенности свойств внутренней сферы комплекса: строго определенное пространственное расположение лигандов вокруг комплексообразователя и достаточно высокая устойчивость к диссоциации связи лиганда с комплексообразователем.Для комплексных соединений, содержащих во внутренней сфере различные лиганды, характерна геометрическая изомерия, наблюдаемая в тех случаях, когда при одинаковом составе внутренней сферы лиганды в ней располагаются по-разному относительно друг друга. Если два одинаковых лиганда расположены рядом, то такое соединение называется цис-изомером, если эти лиганды расположены по разные стороны от комплексообразователя, то это трансизомер. Геометрические изомеры комплексных соединений различаются не только по физическим и химическим свойствам, но и по биологической активности. Эффективность донорно-акцепторного взаимодействия лиганда и комплексообразователя, а следовательно, и прочность связи между ними определяются их поляризуемостью, т. е. способностью трансформировать свои электронные оболочки под внешним воздействием. По этим признакам можно расположить в ряд комплексообразователи и лиганды, участвующие в процессах метаболизма: Комплексообразователи: Увеличение мягкости комплексообразователя: a a a a a a a a a a a a a a a a a a aВ растворах комплексные соединения могут подвергаться первичной и вторичной диссоциации. В водных растворах первичная диссоциация комплексных соединений связана с разрывом в них ионной связи, и поэтому она практически необратима и ее уравнение следует записывать так: [Ag(NH3)2]Cl e [Ag(NH3)2] Cl- Поэтому в водных растворах комплексных соединений, как правило, нельзя обнаружить присутствие ионов или молекул, входящих в состав внутренней сферы. Так, в водных растворах [Ag(NH3)2]Cl не удается обнаружить присутствие катионов Ag и молекул NH3, в растворах К4[Fe(CN)6] - катионов Fe2 и анионов CN-, Вторичная диссоциация комплексного соединения-это распад внутренней сферы комплекса на составляющие ее компоненты. Для количественной характеристики устойчивости внутренней сферы комплексного соединения используют константу равновесия, описывающую полную ее диссоциацию, называемую константой нестойкости комплекса Кнест.Как известно, реакции в растворах всегда протекают в направлении наиболее полного связывания ионов, в том числе за счет образования комплексных соединений, в которых в результате донорно-акцепторного взаимодействия возникает устойчивая внутренняя сфера. Вследствие образования устойчивых комплексов возможно даже растворение тех осадков, которые посылают в раствор за счет диссоциации растворившейся части вещества крайне небольшое количество ионов, способных с добавленным реагентом образовывать устойчивую внутреннюю сферу комплекса: Zn(ОН)2 2NAOH e Na2[Zn(ОН)4]Трансформация или разрушение комплексного соединения происходит в тех случаях, когда компоненты его внутренней сферы, вступая во взаимодействие с добавленным реагентом, связываются или трансформируются вследствие образования: а) более устойчивого комплекса; б) малодиссоциирующего соединения; в) малорастворимого соединения; г) окислительно-восстановительных превращений. Трансформация комплекса с образованием более устойчивого комплекса в результате: - более прочного связывания лигандов с новым комплексообразователем, т. е. реакции обмена комплексообразователя: [Cu(NH3)4]

План
Оглавление

Введение

1. Основные понятия и терминалогия

2. Химическая связь в комплексных соединениях и особенности их строения

2.1 Тип гибридизации атомных орбиталей комплексообразователя и структура внутренней сферы комплексного соединения

3. Химические свойства комплексных соединений

3.1 Диссоциация в растворах

3.2 Образование комплексных соединений

3.3 Трансформация или разрушение комплексных соединений

3.4 Кислотно-основные свойства комплексных соединений

4. Комплексные соединения в аналитической химии

4.1 Качественный анализ катионов

5. Комплексонометрия

5.1 Понятие

5.2 Комплексонометрическое титрование - комплексонометрия

Заключение

Список использованной литературы

Введение
Обширную группу химических соединений составляют комплексы, в молекулах которых всегда можно выделить центральный атом или ион, вокруг которого сгруппированы другие ионы или молекулярные группы.

Комплексы имеют исключительно большое значение в живой и неживой природе. Гемоглобин, благодаря которому осуществляется перенос кислорода из легких к клеткам ткани, является комплексом железа, а хлорофилл, ответственный за фотосинтез в растениях, - комплексом магния. Значительную часть природных минералов, в том числе многие силикаты и полиметаллические руды, также составляют комплексы. Химические методы извлечения металлов из руд связаны с образованием легкорастворимых, легкоплавких и высоколетучих комплексов. Современная химическая промышленность широко использует комплексы как катализаторы.

С использованием комплексов связана возможность получения многообразных лаков и красок, прочных электрохимических покрытий, фотоматериалов, надежных средств переработки и консервирование пищи.

Огромное значение имеют комплексные соединения в аналитической химии. Они используются как в качественном, так и в количественном анализах. Такое разнообразие применений заключается в особенностях строения, структуре химических связей.

При изучении литературы я перед собой ставил следующие цели: - иметь представление о следующих понятиях и величинах: комплексообразователь, лиганд, координационное число, дентатность лиганда, внутренняя и внешняя сферы комплексного соединения, хелатные и полиядерные комплексные соединения;

- знать особенности химической связи во внутренней сфере комплексных соединений; условия образования, разрушения и трансформации комплексных соединений; особенности строения и функции в организме миоглобина, гемоглобина, метгемоглобина, цитохромов, ионофоров;

- понимать сущность металлолигандного гомеостаза и возможностей его нарушения и восстановления; комплексонометрии и ее применения в санитарно-клиническом анализе.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?