Хромосомы – материальные носители генетической информации. Единый генетический код - Контрольная работа

бесплатно 0
4.5 156
Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.


Аннотация к работе
В клетках многих других видов животных и растений также содержится по 46 хромосом; таким образом, разные виды животных различаются не только по числу хромосом, но также - и главным образом - по природе наследственных факторов, содержащихся в хромосомах. Хромосомы всегда парны; в каждой клетке имеется по две хромосомы каждого сорта. В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две-X-хромосома и Y-хромосома-определяют пол (XY-у мужчин или ХХ-у женщин). Число хромосом - п в соматических клетках и количество ДНК - с (от англ. content - содержание) в них обозначают как диплоидное (2п хромосом, 2с ДНК), а в зрелых половых клетках как гаплоидное (п хромосом, с ДНК). У большинства организмов число пар хромосом довольно велико (у человека, например, 23 пары хромосом), и гены, лежащие в данной паре хромосом, при образовании гамет расходятся независимо от генов, находящихся в остальных хромосомах.Достижения в этой области оказывают заметное влияние на другие отрасли наук о человеке - медицину, психиатрию, психологию, педагогику. Современные данные свидетельствуют, что человеком наследуются многие болезни, такие, как несвертываемость крови, цветовая слепота, ряд психических заболеваний. Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая каждый миг нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, сердечнососудистых заболеваний, злокачественных опухолей, предрасположенности к тем или иным инфе6кционным заболеваниям, старости и даже смерти. Если выделить из ядра одной клетки человека все генетические молекулы ДНК и расположить их в линию одна за другой, то общая длина этой линии составит семь с половиной сантиметров.

План
Оглавление

Введение

Строение хромосом ДНК,РНК

Хромосомные заболевания

Деление клеток

Кариотип

Передача генетической информации

Генетический код

Заключение

Список использованной литературы

Введение
наследственный генетический клетка деление хромосома

Хромосома - (chromosome) - нитевидная структура клеточного ядра, несущая генетическую информацию в виде генов.

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования.

В каждой клетке любого организма содержится определенное число хромосом. У человека их 46; следовательно, каждая клетка тела человека содержит в точности 46 хромосом. В клетках многих других видов животных и растений также содержится по 46 хромосом; таким образом, разные виды животных различаются не только по числу хромосом, но также - и главным образом - по природе наследственных факторов, содержащихся в хромосомах. Хромосомы всегда парны; в каждой клетке имеется по две хромосомы каждого сорта. Так, 46 хромосом человека принадлежат к 23 сортам, по две хромосомы каждого сорта. Они отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. У большинства видов эти морфологические различия между хромосомами достаточно ясно выражены.

В большинстве нормальных клеток человека содержится полный набор составляющих геном 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две- X-хромосома и Y-хромосома- определяют пол (XY- у мужчин или ХХ- у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар оснований нуклеотидов ДНК, образующих 20000-25000 генов.

Ген хранит информацию для синтеза белка (фермента), необходимого для успешного осуществления в клетке определенной реакции. В 60-х годах, во многом благодаря трудам Ниренберга (США), был открыт закон соответствия между ДНК и белками - генетический код.

При выборе темы я руководствовалась не только личными интересами, но и интересами всего человечества. Хромосомы - важнейшая составляющая живых организмов. При этом она является материальным носителем генетической информации, от чего может зависеть дальнейшая жизнь на планете. Вопрос генетики - глобален.

Цель данной работы: изучить хромосому, как материальный носитель генетической информации. Объяснить систему зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода.

В 80-х годах прошлого столетия в ядрах эукариотических клеток были открыты нитевидные структуры, названные В. Вальдейером (1888 г.) хромосомами (от греч. chroma - цвет, окраска, soma - тело). Этим термином было подчеркнуто сильное сходство хромосом по сравнению с другими клеточными органеллами к основным красителям. В течение последующих 10 - 15 лет большинством биологов было подтверждено, что именно хромосомы служат материальным носителем наследственности.

Строение хромосом, ДНК,РНК

Каждая хромосома состоит из центральной нити, именуемой хромонемой, вдоль которой расположены четкообразные структуры - хромомеры. У каждой хромосомы в определенном месте находится так называемая центромера - небольшой ясно выраженный округлый участок, регулирующий движение хромосом при клеточном делении. Такую структуру хромосом можно наблюдать только во время деления клетки, в другое же время они имеют вид тонких, темноокрашенных нитей, называемых хроматином. Исследования показали, что хромосомы существуют в виде отдельных, физиологически и структурно обособленных единиц и в промежутках между двумя последовательными клеточными делениями.

Когда хромомеры были впервые открыты, многие биологи сочли их за гены - наследственные факторы, которые, как показали предшествовавшие опыты со скрещиваниями, лежат в хромосомах в линейном порядке. Однако дальнейшие исследования показали, что между хромомерами и генами нет взаимнооднозначного соответствия, т. е. каждая хромомера не соответствует одному определенному гену. Оказалось, что некоторые хромомеры содержат по нескольку генов, а некоторые гены локализованы между хромомерами.

Основной химический компонент хромосом - молекулы ДНК. Содержание ее в ядрах соматических клеток в два раза больше, чем в ядрах зрелых половых клеток. Эти два типа клеток отличаются друг от друга и по числу хромосом. Число хромосом - п в соматических клетках и количество ДНК - с (от англ. content - содержание) в них обозначают как диплоидное (2п хромосом, 2с ДНК), а в зрелых половых клетках как гаплоидное (п хромосом, с ДНК). После фазы синтеза ДНК в соматических клетках число хромосом не изменяется (2п), однако каждая из них содержит две сестринские хроматиды, т.е. идентичные молекулы ДНК.

Ген - это молекула ДНК, двойная спираль из нуклеотидов, в последовательности которых записана генетическая информация с помощью триплетного кода.

Наследственная информация передается от одного поколения другому многими тысячами генов, содержащимися в ядре каждой яйцеклетки и каждого сперматозоида. В каждом гене заключен код для синтеза одного определенного белка. Упорядоченность процесса наследования и возможность предсказывать особенности еще не родившихся потомков обусловлены тем, что единицы наследственности - гены - объединяются в хромосомы, в которых они располагаются в определенном порядке. Каждая клетка содержит по две хромосомы каждого типа, а значит, и каждый ген представлен в ней дважды. Благодаря строгой упорядоченности митотического процесса каждая дочерняя клетка также получает по две хромосомы каждого типа и по два полных набора генов. Исключение составляют только те клеточные деления, в результате которых образуются гаметы - яйцеклетки и сперматозоиды. При этих делениях члены каждой пары хромосом расходятся и попадают в разные клетки, так что зрелые яйцеклетки и сперматозоиды содержат только по одной хромосоме каждого типа и по одному набору генов. При оплодотворении, когда две половые клетки сливаются, каждая из них вносит по одному набору хромосом, и таким образом парность хромосом восстанавливается; каждый ген теперь снова представлен в клетке дважды. Эти простые факты лежат в основе всех явлений, описываемых классической менделевской генетикой. При образовании гамет два члена каждой пары генов расходятся в разные клетки, а при оплодотворении в результате объединения набора генов яйцеклетки с набором генов сперматозоида возникает новое сочетание генов, определяющее развитие признаков у потомства. У большинства организмов число пар хромосом довольно велико (у человека, например, 23 пары хромосом), и гены, лежащие в данной паре хромосом, при образовании гамет расходятся независимо от генов, находящихся в остальных хромосомах.

Между геном и признаком, который он определяет, может быть простое однозначное соответствие; в других случаях один ген может участвовать в определении нескольких или многих признаков, затрагивающих различные части организма, или, наконец, несколько генов могут совместно регулировать проявление какого-нибудь одного признака. Информация, заключенная в каждом гене, учитывается» и используется для синтеза специфического белка. Наличие в организме этого белка, например фермента, создает химическую основу для проявления определенного признака.

Еще в 1869 году швейцарский биохимик Фридрих Мишер обнаружил в ядре клеток соединения с кислотными свойствами и с еще большей молекулярной массой, чем белки. Альтман назвал их нуклеиновыми кислотами, от латинского слова «нуклеус» - ядро. Так же, как и белки, нуклеиновые кислоты являются полимерами. Мономерами их служат нуклеотиды, в связи с чем нуклеиновые кислоты можно еще назвать полинуклеотидами.

Нуклеиновые кислоты были найдены в клетках всех организмов, начиная от простейших и кончая высшими. Самое удивительное, что химический состав, структура и основные свойства этих веществ оказались сходными у разнообразных живых организмов. Но если в построении белков принимают участие около 20 видов аминокислот, то разных нуклеотидов, входящих в состав нуклеиновых кислот, всего четыре.

В живых клетках содержится два типа нуклеиновых кислот - дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Как ДНК, так и РНК несут в себе нуклеотиды, состоящие из трех компонентов: азотистого основания, углевода, остатка фосфорной кислоты. Однако комбинация этих компонентов в ДНК и РНК несколько различны.

Фосфорная кислота в молекулах ДНК и РНК одинакова. Углевод же имеется в двух вариантах: у нуклеотидов ДНК - дезоксирибоза, а у нуклеотидов РНК - рибоза. И рибоза, и дезоксирибоза - пятичленные, пятиуглеродистые соединения - пентозы. У дезоксирибозы, в отличие от рибозы, лишь на один атом кислорода меньше, что и определяет ее название, так как дезоксирибоза в переводе с латинского означает лишенная кислорода рибоза. Строгая локализация дезоксирибозы в ДНК, а рибозы в РНК, как раз и определяет название этих двух видов нуклеиновых кислот.

Третий компонент нуклеотидов ДНК и РНК - азотистые соединения, то есть вещества, содержащие азот и обладающие щелочными свойствами. В нуклеиновые кислоты входят две группы азотистых оснований. Одни из них относятся к группе пиримидинов, основу строения которых составляет шестичленное кольцо, а другие к группе пуринов, у которых к пиримидинову кольцу присоединено еще и пятичленное кольцо.

В состав молекул ДНК и РНК входят два разных пурина и два разных пиримидина. В ДНК имеются пурины - аденин, гуанин и пиримидины - цитозин, тимин. В молекулах РНК те же самые пурины, но из пиримидинов - цитозин и вместо тимина - урацил. В зависимости от содержания того или иного азотистого основания нуклеотиды называются адениловыми, тимиловыми, цитозиловыми, урациловыми, гуаниловыми.

Последовательность расположения нуклеотидов в цепях молекул нуклеиновых кислот так же, как и аминокислот в молекулах белков, строго специфична для клеток разных организмов, то есть носит видовой характер.

ДНК представляет свою двойную спираль.

Полинуклеидные цепи достигают гигантских размеров. Вполне понятно, что в связи с этим они так же, как и белки, определенным образом упакованы в клетке.

Образование связей в молекуле ДНК - процесс строго закономерный. Адениловый нуклеотид может образовывать связи лишь с тимиловым, а гуаниловый только с цитозиловым. Эта закономерность получила название принципа комплиментарности, то есть дополнительности. В самом деле, такая строгая последовательность в выборе пары наводит на мысль, что в двойной молекуле ДНК аденин как бы дополняет тимин и наоборот, а гуанин соответственно - цитозин, как две половинки разбитого зеркала.

Принцип комплиментарности позволяет понять механизм уникального свойства молекул ДНК - их способность самовоспроизводиться. ДНК - это единственное вещество в живых клетках, обладающее подобным свойством. Процесс самовоспроизведения молекул ДНК происходит при активном участии ферментов. Особые расплетающие белки последовательно как бы проходят вдоль системы водородных связей, соединяющих азотистые основания обеих полинуклеотидных цепей, и разрывают их. Образовавшиеся в результате одиночные полинуклеотидные цепи ДНК достраиваются согласно принципу комплиментарности с помощью фермента за счет свободных нуклеотидов, всегда находящихся в цитоплазме и ядре. Напротив гуанилового нуклеотида становится свободный цитозиловый нуклеотид, а напротив цитозилового, в свою очередь, гуаниловый и так далее. Во вновь образовавшейся цепи возникают углеводно-фосфатные и водородные связи. Таким образом, в ходе самовоспроизведения ДНК из одной молекулы синтезируются две новые.

ДНК в клетке локализована в основном в ядре, в его структурных компонентах - хромосомах.

Хромосомные заболевания

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена. Известны трисомии по 13-й хромосоме - Синдром Патау, а также по 18-й хромосоме - синдром Эдвардса, при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни изза множественных пороков развития.

Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) - это синдром Шерешевского-Тернера. Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.

Деление клеток

Митоз

Митоз, или непрямое деление, - основной способ размножения эукариотических клеток, обусловливающий, в частности, возможность увеличения их биомассы, рост и регенерацию. Митоз состоит из четырех фаз: Первая - профаза - характеризуется началом цикла компактизации хромосом, который продолжается в течение всей этой фазы. К концу профазы исчезают ядрышко и ядерная мембрана.

Вторая -метафаза. Хромосомы выстраиваются по экватору клетки. Хроматиды соединены между собой между собой в центромере, называемой также первичной перетяжкой.

Третья - анафаза - начинается с разрыва ценромеры, в результате чего сестринские хроматиды расходятся к разным полюсам клетки. С этого момента каждая пара сестринских хроматид получает название дочерних хромосом.

Четвертая - телофаза. Хромосомы достигают полюсов клетки, появляются ядерная мембрана, ядрышко. Заканчивается митоз делением цитоплазмы и в типичных случаях - восстановлением исходной биомассы дочерних клеток.

Биологическая роль митоза состоит в обеспечении идентичной генетической информацией двух дочерних клеток. Это достижимо только благодаря циклу компактизации - декомпактизации, который и позволяет распределить наследственные молекулы в минимальном объеме митотических хромосом. В противном случае, учитывая размеры клетки (десятки или сотни кубических микрометров) и длину декомпактизованной хромосомы (сантиметры), каждое клеточное деление сопровождалось бы хаотичным переплетением хромосомного материала.

В эволюции эукариотических клеток, видимо, это обстоятельство и послужило причиной становления столь сложного генетического процесса, как митоз.

Мейоз.

Термином «мейоз» обозначают два следующих друг за другом деления, в результате которых из диплоидных клеток образуются гаплоидные половые клетки - гаметы. Если бы оплодотворение происходило диплоидными гаметами, то плоидность потомков в каждом следующем поколении должна была бы возрастать в геометрической прогрессии. В то же время благодаря мейозу зрелые гаметы всегда гаплоидны, что позволяет сохранять диплоидность соматических клеток вида. Возможность существования подобного мейозу деления при созревании гамет животных и растений была предсказана А. Вейсманом еще в 1887 г. Мейотические деления не эквивалентны митозу. Обоим мейотическим делениям предшествует только одна фаза синтеза ДНК. Продолжительность ее, как и профазы I деления мейоза, во много раз превосходит соответствующие показатели митотического цикла любых соматических клеток данного вида. Главные события мейоза в профазе I деления. Она состоит из пяти стадий.

В первой стадии - лептотене, следующей непосредственно за окончанием предмейотического синтеза ДНК, выявляются тонкие длинные хромосомы.

Во второй стадии профазы I деления - зиготене - происходит тесное сближение по всей длине (конъюгация) гомологичных хромосом. Гомологичными называются хромосомы, имеющие одинаковую форму и размер, но одна из них получена от матери, другая - от отца. Гаплоидный набор равен числу пар гомологов.

Третья стадия профазы I деления - пахитена - у большинства видов самая длительная. В результате в каждом гомологе смешиваются отцовский и материнский наследственный материал. По мере приближения к метафазе первого деления число хиазм уменьшается.

В метафазе I деления мейоза район центромеры каждой хромосомы соединен (в отличие от метафазы митоза) нитью веретена только с одним полюсом клетки, причем центромеры разошедшихся гомологов всегда связаны с противоположными полюсами. Анафазе I деления мейоза не предшествует расщепление центромеры, как при митозе, и поэтому к полюсам отходят не хроматиды, а целые хромосомы, состоящие из двух хроматид.

Второе деление мейоза, следующее после краткого промежутка - интеркинеза, приводит в соответствие число хромосом и содержание ДНК. Формально оно напоминает митоз. В начале анафазы происходит разделение центромеры, сестринские хроматиды становятся дочерними хромосомами и расходятся к полюсам.

Итак, главное отличие мейоза от митоза - конъюгация гомологичных хромосом с последующим расхождением их в разные гаметы. Точность расхождения обусловлена точностью конъюгации, а последняя - идентичностью молекулярной структуры ДНК гомологов.

В заключение отметим, что цитологами доказано независимое расхождение негомологичных хромосом в профазе I деления мейоза. Это означает, что любая отцовская хромосома может попасть в гамету с любой, в крайнем варианте - со всеми материнскими негомологичными хромосомами. Однако если речь идет о дочерних хромосомах (во II делении мейоза), образовавшихся из перекрещенных, т.е. претерпевших кроссинговер, или кроссоверных хроматид , то их, строго говоря, нельзя рассматривать ни как чисто отцовские, ни как чисто материнские.

Кариотип.

Кариотипом называется хромосомный комплекс вида со всеми его особенностями: числом хромосом, их формой, наличием видимых под световым микроскопом деталей строения отдельных хромосом. Иногда термин «кариотип» употребляют по отношению к хромосомному набору единичной клетки или группы тканевых клеток.

О некоторых элементах кариотипа - гомологах - уже упоминалось. Группируя их попарно, можно по микрофотографии профазных или метафазных хромосом, после специальной предфиксационной обработки клеток, построить идиограмму, т.е. расположить хромосомы в порядке уменьшения их длины.

Каждая хромосома имеет центромеру, или первичную перетяжку, - место прикрепления нитей веретена. Иногда наблюдаются вторичные перетяжки, не связанные с функциями митотических движений хромосом. Первая перетяжка делит хромосомы на плечи. Ее положение в середине, близко к середине или почти у концевых участков хромосомы, называемых теломерами, позволяет классифицировать хромосомы на метацентрические, субметацинтрические и акроцентрические соответственно. У некоторых хромосом во всех или в большинстве клеток бывают видны спутники - небольшие, как правило, специфические фрагменты тела хромосомы, соединенные с теломерами участком декомпактизованной ДНК - спутничной нитью.

Число хромосом видоспецифично. Хотя закономерности, характеризующие кариотип, иногда и отражают эволюцию определенных видов, в целом по структуре кариотипа прямо судить о систематическом положении вида нельзя.

У большинства высших животных и растений одна пара хромосом у особей одного из полов гетероморфна. Эти непохожие хромосомы называются половыми. В частности, у млекопитающих и у дрозофилы клетки мужских организмов имеют Х- и Y-хромосомы. У многих видов Y-хромосома отсутствует. Все остальные хромосомы называются аутосомами.

Таким образом, благодаря исследованиям цитологов в конце XIX - начале ХХ в. была обоснована роль ядра в наследственности, а наблюдения за поведением хромосом в митозе и мейозе привели к заключению, что именно с ними связана передача наследственных признаков.

Передача генетической информации

Как известно, особенности, характеризующие потомков, передаются им от родителей через половые клетки: мужскую - сперматозоид и женскую - яйцеклетку. Слияние их при оплодотворении приводит к образованию единой клетки зиготы, из которой развивается зародыш человека. Очевидно, что именно в этих двух половых клетках и в образовавшейся при их слиянии зиготе хранится наследственная информация о физических, биохимических и физиологических свойствах, с которыми появляется новый человек.

Материальной основой наследственности служат нуклеиновые кислоты, а именно ДНК.

Генетический код

Это система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. Как уже известно - в природных нуклеиновых кислотах - дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) - встречаются 5 распространенных типов нуклеотидов (по 4 в каждой нуклеиновой кислоте), различающихся по входящему в их состав азотистому основанию В ДНК встречаются основания: Аденин (А), гуанин (Г), Цитозин (Ц), Тимин (Т); в РНК вместо тимина присутствует Урацил (У). Кроме них, в составе нуклеиновых кислот обнаружено около 20 редко встречающихся оснований, а также необычных сахаров. Т. к. количество кодирующих знаков и число разновидностей аминокислот в белке не совпадают, кодовое число (т. е. количество нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42=16, но этого также недостаточно для зашифровки всех аминокислот.

Триплетность - значащей единицей кода является сочетание трех нуклеотидов (триплет, или кодон).

Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.

Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

Однозначность (специфичность) - определенный кодон соответствует только одной аминокислоте.

Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Американский ученый Г. Гамов предложил (1954) модель триплетного генетического кода, т. е. такого, в котором 1 аминокислоту кодирует группа из трех нуклеотидов, называющихся Кодоном. Число возможных Триплетов равно 43=64, а это более чем втрое превышает число распространенных аминокислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует несколько кодонов (вырожденность кода). Было предложено много различных моделей генетического кодирования., из которых серьезного внимания заслуживали три модели.

В 1961 Ф. Крик с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены следующие основные закономерности, касающиеся генетического кодирования: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (колинеарность);

2) считывание генетического кода начинается с определенной точки;

3) считывание идет в одном направлении в пределах одного гена;

4) код является неперекрывающимся;

5) при считывании не бывает промежутков (код без запятых);

6) генетический код, как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность уменьшает вероятность того, что мутационная замена основания в триплете приведет к ошибке);

7) кодовое число равно трем;

8) код в живой природе универсален (за некоторыми исключениями). Универсальность генетического кода подтверждается экспериментами по синтезу белка in vitro. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из др. организма, далеко отстоящего от первого в эволюционном отношении (например, проростков гороха), то в такой системе, будет идти белковый синтез.

Реализация генетического кода в клетке происходит в два этапа: Первый из них протекает в ядре; он носит название транскрипции и заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК «переписывается» в нуклеотидную последовательность РНК.

Второй этап - Трансляция - протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке: этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.

Вывод
Изучение генетики человека, несмотря на всю сложность, важно не только с точки зрения науки. Трудно переоценить и прикладное значение проводимых исследований.

Достижения в этой области оказывают заметное влияние на другие отрасли наук о человеке - медицину, психиатрию, психологию, педагогику.

В частности, велика роль развивающейся генетики человека в решении проблем наследственных болезней. Современные данные свидетельствуют, что человеком наследуются многие болезни, такие, как несвертываемость крови, цветовая слепота, ряд психических заболеваний. Кроме того, генетика человека призвана решать и другие вопросы.

Можно с полной уверенностью сказать, что, например, в молекулах ДНК клеток человека запрограммирована генетическая информация, контролирующая каждый миг нашей жизни. Это касается здоровья, нормального развития, продолжительности жизни, наследственных болезней, сердечнососудистых заболеваний, злокачественных опухолей, предрасположенности к тем или иным инфе6кционным заболеваниям, старости и даже смерти.

Если выделить из ядра одной клетки человека все генетические молекулы ДНК и расположить их в линию одна за другой, то общая длина этой линии составит семь с половиной сантиметров. Такова биохимическая рабочая поверхность хромосом. Это сконцентрированное в молекулярной записи наследие веков прошедшей эволюции.

Наследственная память человеческого организма - результат жизненного опыта неисчислимых поколений, от рыбьих наших предков до человека, от палеозойской эры до наших дней. Эта инстинктивная память клеток и организма в целом есть тот автопилот, который автоматически ведет нас через все проявления жизни, борясь с болезнями, заставляя действовать сложнейшие автоматические системы нервной, химической, электрической регулировки.

Исследования последних лет доказали, что любая живая клетка, в том числе и клетка человеческого организма, представляет собой целостную систему, все составные элементы которой обнаруживают тесное взаимодействие между собой и окружающей средой, оказывающей на гены огромное влияние. Поэтому различают два понятия: генотип - комплекс всех наследственных фактов - генов, получаемых потомками от родителей, и фенотип - совокупность признаков, возникающих при взаимодействии генотипа и внешней среды.

Следовательно, в формировании фенотипа важны как генотип, так и внешняя среда, в которой происходит развитие особи. Без этого взаимодействия невозможна была бы жизнь, связанная с реализацией генетической информации, заключенной в нуклеиновых кислотах.

Закономерности генетики в большинстве случаев носят универсальный характер. Они одинаково важны для растений, для животных. Велико их значение и для человека.

Список литературы
Интернет: www/vikipedia.ru

Генетика и наследственность Сборник статей. 2006 г.

Общая генетика. Алихонян С. И. 2005 г.

Ботаника: Морфология и анатомия растений. Васильев А.Е. Просвещение. 2003 г.

Размещено на .
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?