Изучение пространственной структуры белка - Реферат

бесплатно 0
4.5 79
История исследования белков. Основные виды пространственной структуры белков, особенности ее определения. Первичная и вторичная, третичная и четвертичная структура белка. Расщепление полипептидной цепи на фрагменты при помощи протеолитических ферментов.


Аннотация к работе
Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме (гемоглобин, некоторые белки растений). В начале 20 века немецкий химик Эмиль Герман Фишер впервые применил методы органической химии для изучения белков и доказал, что белки состоят из аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков, проведен рентгеноструктурный анализ аминокислот и пептидов, разработаны методы хроматографического анализа. Белки - высокомолекулярные органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.Указано, что белки - обязательная составная часть всех живых клеток, играют исключительно важную роль в живой природе, являются главным, наиболее ценным и незаменимым компонентом питания.

План
Содержание

Введение

История исследования белков

1. Виды пространственной структуры белков

Третичная структура

2. Определение пространственной структуры белка

Определение первичной структуры белка

Определение вторичной структуры белков

Определение третичной и четвертичной структуры белка

Заключение

Список использованной литературы

Введение
История исследования белков

Первые попытки выделить белки были предприняты еще в 18 веке. К началу 19 века появляются первые работы по химическому изучению белков. Французские ученые Жозеф Луи Гей-Люссак и Луи Жак Тенар попытались установить элементный состав белков из разных источников, что положило начало систематическим аналитическим исследованиям, благодаря которым был сделан вывод о том, что все белки сходны по набору элементов, входящих в их состав.

В 1836 голландский химик Г.Я. Мульдер предложил первую теорию строения белковых веществ, согласно которой все белки имеют некий гипотетический радикал (С40H62N10O12), связанный в различных пропорциях с атомами серы и фосфора. Он назвал этот радикал "протеином" (от греческого protein - первый, главный). Теория Мульдера способствовала увеличению интереса к изучению белков и совершенствованию методов белковой химии. Были разработаны приемы выделения белков путем экстракции растворами нейтральных солей, впервые были получены белки в кристаллической форме (гемоглобин, некоторые белки растений). Для анализа белков стали использовать их предварительное расщепление с помощью кислот и щелочей.

В начале 20 века немецкий химик Эмиль Герман Фишер впервые применил методы органической химии для изучения белков и доказал, что белки состоят из аминокислот, связанных между собой амидной (пептидной) связью. Позже, благодаря использованию физико-химических методов анализа, была определена молекулярная масса многих белков, установлена сферическая форма глобулярных белков, проведен рентгеноструктурный анализ аминокислот и пептидов, разработаны методы хроматографического анализа.

В 1950-х годах была доказана трехуровневая организация белковых молекул - наличие у них первичной, вторичной и третичной структуры; создали автоматический анализатор аминокислот (Станфорд Мур, Уильям Хауард Стайн, 1950). В 60-х годы были предприняты попытки химического синтеза белков (инсулин, рибонуклеаза). Существенно усовершенствовались методы рентгеноструктурного анализа; был создан прибор - секвенатор (П. Эдман, Г. Бэгг, 1967), позволявший определять последовательность аминокислот в полипептидной цепи.

1. Виды пространственной структуры белков

Белки - высокомолекулярные органические вещества, построенные из аминокислот и играющие фундаментальную роль в структуре и жизнедеятельности организмов. Сухое вещество большинства органов и тканей человека и животных, а также большая часть микроорганизмов состоят главным образом из белков (40-50%), причем растительному миру свойственно отклонение от этой средней величины в сторону понижения, а животному - повышения. Белковые вещества лежат в основе важнейших процессов жизнедеятельности. Так, например, процессы обмена веществ (пищеварение, дыхание, выделение, и другие) обеспечиваются деятельностью ферментов, являющихся по своей природе белками. К белкам относятся и сократительные структуры, лежащие в основе движения, например сократительный белок мышц (актомиозин), опорные ткани организма (коллаген костей, хрящей, сухожилий), покровы организма (кожа, волосы, ногти и т.п.), состоящие главным образом из коллагенов, эластинов, кератинов, а также токсины, антигены и антитела, многие гормоны и другие биологически важные вещества.

Структура

При изучении состава белков было установлено, что все они построены по единому принципу и имеют четыре уровня организации: первичную, вторичную, третичную, а отдельные из них и четвертичную структуры.

Первичная структура

Представляет собой линейную цепь аминокислот (полипептид), расположенных в определенной последовательности с четким генетически обусловленным порядком чередования и соединенных между собой пептидными связями.

Пептидная связь образуется за счет а-карбоксильной группы одной аминокислоты и а-аминной группы другой

К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков. Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется сокращенная форма записи - трехбуквенная или однобуквенная.

При записи аминокислотной последовательности в полипептидных или олигопептидных цепях с помощью сокращенной символики предполагается, если это особо не оговорено, что а-аминогруппа находится слева, а а-карбоксильная группа - справа. Соответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки - соответственно N-концевым и С-концевым остатками.

Вторичная структура

Вторичной структурой называют конформацию, фрагмента полипептидной цепи, стабилизированное водородными связями.

Впервые такая структура на основе рентгеноструктурного анализа была обнаружена при изучении главного белка волос и шерсти - a - кератина (Л. Полинг). Ее назвали а-структурой или а-спиралью. Обычно в природных продуктах встречаются белки со строением правой спирали, хотя известна и структура левой спирали.

Спиральные структуры белка.

Для полипептидных цепей известно несколько различных типов спиралей. Если при наблюдении вдоль оси спирали она удаляется от наблюдателя по часовой стрелке, то спираль считается правой (правозакрученной), а если удаляется против часовой стрелки - левой (левозакрученной). Наиболее распространена правая а-спираль (предложена Л. Полингом и Р. Кори). Идеальная а-спираль имеет шаг 0,54 нм и число однотипных атомов на один виток спирали 3,6. строение спирали стабилизируется внутримолекулярными водородными связями.

В природных белках существуют лишь правозакрученные а-спиральные конформации полипептидных цепей, что сопряжено с наличием в белковых телах аминокислот только L-ряда (за исключением особых случаев).

При растяжении а-кератина образуется вещество с другими свойствами - b-кератин. При растяжении спираль макромолекулы белка превращается в другую структуру, напоминающую линейную. Отдельные полипептидные цепи здесь связаны межмолекулярными водородными связями. Эта структура называется b-структурой (структура складчатого листа, складчатого слоя)

Складчатые структуры белка.

Одним из распространенных примеров складчатой периодической структуры белка являются так называемые b-складки, состоящие из двух фрагментов, каждый из которых представлен полипептидом. b-складки также стабилизируются водородными связями между атомом водорода аминной группы одного фрагмента и атомом кислорода карбоксильной группы другого фрагмента. При этом фрагменты могут иметь как параллельную, так и антипараллельную ориентацию относительно друг друга.

Для того чтобы два участка полипептидной цепи располагались в ориентации, благоприятствующей образованию b-складок, между ними должен существовать участок, имеющий структуру, резко отличающийся от периодической.

Возникновение a - и b-структур в белковой молекуле является следствием того, что аминокислоты и в составе полипептидных цепей сохраняют присущую им способность к образованию водородных связей. Таким образом, крайне важное свойство аминокислот - соединяться друг с другом водородными связями в процессе образования кристаллических препаратов - реализуется в виде а-спиральной конформации или b-структуры в белковой молекуле. Следовательно, возникновение указанных структур допустимо рассматривать как процесс кристаллизации участков полипептидной цепи в пределах одной и той же белковой молекулы.

Третичная структура

Сведения о чередовании аминокислотных остатков в полипептидной цепи (первичная структура) и наличие в белковой молекуле спирализованных, слоистых и неупорядоченных ее фрагментов (вторичная структура) еще не дают полного представления ни об объеме, ни о форме, ни тем более о взаимном расположении участков полипептидной цепи по отношению друг к другу. Эти особенности строения белка выясняют при изучении его третичной структуры, под которой понимают - общее расположение в пространстве составляющих молекул одной или нескольких полипептидных цепей, соединенных ковалентными связями. То есть третичная конфигурация - реальная трехмерная конфигурация, которую принимает в пространстве закрученная спираль, которая в свою очередь свернута спиралью. У такой структуры в пространстве имеются выступы и впадины с обращенными наружу функциональными группами.

Полное представление о третичной структуре дают координаты всех атомов белка. Благодаря огромным успехом рентгеноструктурного анализа такие данные, за исключением координат атомов водорода получены для значительного числа белков. Это огромные массивы информации, хранящиеся в специальных банках данных на машиночитаемых носителях, и их обработка немыслима без применения быстродействующих компьютеров. Полученные на компьютерах координаты атомов дают полную информацию о геометрии полипептидной цепи, что позволяет выявить спиральную структуру, b-складки или нерегулярные фрагменты.

Третичная структура формируется в результате нековалентных взаимодействий (электростатические, ионные, силы Ван-дер-Ваальса и др.) боковых радикалов, обрамляющих а-спирали и b-складки, и непериодических фрагментов полипептидной цепи. Среди связей, удерживающих третичную структуру, следует отметить: а) дисульфидный мостик (-S-S-) между двумя остатками цистеина;

б) сложноэфирный мостик (между карбоксильной группой и гидроксильной группой);

в) солевой мостик (между карбоксильной группой и аминогруппой);

г) водородные связи между группами - СО - и - NH-;

Третичной структурой объясняется специфичность белковой молекулы, ее биологическая активность.

Первые пространственные модели молекул белка - миоглобина и гемоглобина - построили в конце 50-х гг. XX в. английские биохимики Джон Ко-удери Кендрю (родился в 1917 г.) и Макс Фердинанд Перуц (родился в 1914 г.). При этом они использовали данные экспериментов с рентгеновскими лучами. За исследования в области строения белков Кендрю и Перуц в 1962 г. были удостоены Нобелевской премии. А в конце столетия была определена третичная структура уже нескольких тысяч белков.

Четвертичная структура

У большинства белков пространственная организация заканчивается третичной структурой, но для некоторых белков с молекулярной массой больше 50-100 тысяч, построенных из несколько полипептидных цепей характерна четвертичная.

Сущность такой структуры в объединении несколько полимерных цепей были в единый комплекс. Такой комплекс также рассматривается как белок, состоящий из нескольких субъединиц. Белки, состоящие из нескольких субъединиц, широко распространены в природе (гемоглобин, вирус табачной мозаики, фосфорилаза, РНК-полимераза). Субъединицы принято обозначать греческими буквами (так у гемоглобина имеется по две a и b субъединицы). Наличие нескольких субъединиц важно в функциональном отношении - оно увеличивает степень насыщения кислородом.

Четвертичная структура (клубок белков)

Четвертичная структура стабилизируется в основном силами слабых воздействий: а) водородная; б) гидрофобная; в) ионные; г) ковалентные (дисульфидные, пептидные).

2. Определение пространственной структуры белка

Определение первичной структуры белка

Определению первичной структуры предшествует денатурация и разрыв поперечных дисульфидных связей в белке. Это достигается посредством избытка меркаптоэтанола.

Цистин превращается в два остатка цистеина, которые затем блокируют избытком иодуксусной кислоты, чтобы предотвратить обратное образование связей - S-S-.

Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т.е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину. Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с N-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. пространственная структура белок полипептидная цепь

После идентификации концевого N-аминокислотного остатка метка вводится в следующий аминокислотный остаток, который становится концевым. Метод Эдмана можно автоматизировать, пользуя секвенатор (от англ. sequetice - последовательность) с помощью которого ФТГ-производные отщепляются от полипептида и идентифицируются посредством высокоэффективной жидкостной хроматографии.

Ф. Сэнгер впервые полностью расшифровал первичную структуру белкового гормона инсулина, используя метод Эдмана.

Другим высокочувствительным методом является так называемый дансильный метод, связанный с присоединением к концевой аминокислоте дансилхлорида (1-диметиламино-нафталин-5-сульфохлорида) по следующей схеме:

Первичная структура белка может быть установлена косвенно следующим образом: сначала получают соответствующую КДНК., затем идентифицируют клон, относящийся к анализируемому белку, и по чередованию в нем нуклеотидов с использованием библиотеки аминокислотных последовательностей определяют первичную структуру белка.

Определение вторичной структуры белков

Для определения вторичной структуры белков используются в основном оптические методы. Конечно, более надежным является рентгеноструктурный метод, однако его применение сопряжено с определенными трудностями и требует значительного времени. Такие оптические методы, как дисперсия оптического вращения и круговой дихроизм, являются более простыми и, что весьма важно, позволяют определять изменения вторичной структуры белка в растворах. При помощи дисперсии оптического вращения можно получить информацию о степени спирализации белковой макромолекулы. Несмотря на то, что метод является приближенным, достаточно отчетливо просматриваются переходы типа спираль-клубок. Что касается метода кругового дихроизма, то его спектр определяется набором углов ш и ц, свойственных тому или иному типу вторичной структуры. Оба метода можно расценивать как скриннинговые, и для полной идентификации вторичной структуры их надо комбинировать с рентгеноструктурным анализом белков.

Определение третичной и четвертичной структуры белка

Третичная и четвертичная структуры белков определяются при помощи рентгеноструктурного анализа, который впервые был проведен применительно к миоглобину и гемоглобину Дж. Кендрью и М. Перутцем в Кембридже. Значение рентгеноструктурного анализа белков трудно переоценить, так как именно этот метод дал возможность впервые получить своеобразную фотографию белковой молекулы. Для получения информативной рентгенограммы необходимо было иметь полноценный кристалл белка с включенными в него атомами тяжелых металлов, так как последние рассеивают рентгеновские лучи сильнее атомов белка и изменяют интенсивность дифрагированных лучей. Таким образом можно определить фазу дифрагированных на белковом кристалле лучей и затем электронную плотность белковой молекулы.

Это впервые удалось сделать М. Перутцу в 1954 г., что явилось предпосылкой для построения приближенной модели молекулы белка, которая затем была уточнена при помощи ЭВМ. Однако первым белком, пространственная структура которого была полностью идентифицирована Дж. Кендрью, оказался миоглобин, состоящий из 153 аминокислотных остатков, образующих одну полипептидную цепь. В результате было экспериментально подтверждено предположение Л. Полинга и Р. Кори о наличии в молекуле миоглобина б-спиральных участков, а также М. Перутца и Л. Брэгга о том, что они имеют цилиндрическую форму. Несколько позднее М. Перутцем была расшифрована структура гемоглобина, состоящая из 574 аминокислотных остатков и содержащая около 10 000 атомов.

Вывод
В данной работе были рассмотрены первичные, вторичные, третичные и четвертичные структуры белков. Указано, что белки - обязательная составная часть всех живых клеток, играют исключительно важную роль в живой природе, являются главным, наиболее ценным и незаменимым компонентом питания. Это связанно с той огромной ролью, которую они играют в процессах развития и жизни человека. Белки являются основой структурных элементов и тканей, поддерживают обмен веществ и энергии, участвуют в процессах роста и размножения, обеспечивают механизмы движений, развитие иммунных реакций, необходимы для функционирования всех органов и систем организма.

"Жизнь - это форма существования белка"

Список литературы
1. "ХИМИЯ-справочник для абитуриентов и студентов". Издательство ACT-Фолио, Москва, 2000 год.

2. Большая медицинская энциклопедия.

3. "Энциклопедия для детей. Химия". Аванта , Москва, 2000 год.

4. Албертс Б., Брей Д., и др. Молекулярная биология клетки Москва, 1994.

5. Биотехнология. Производство белковых веществ. В.А. Быков, М.Н. Манаков. Москва "Высшая школа" 1987г.

6. Артеменко А.И. Органическая химия: учеб. для строит. спец. вузов. - М.: Высшая школа, 2000.

7. Березин Б.Д., Березин Д.Б. Курс современной органической химии. Учебное пособие для вузов. - М.: Высшая школа, 1999.

8. Кнорре Д.Г., Мызина С.Д. Биологическая химия. - М.: Высшая школа, 1998.

9. Общая органическая химия. Под ред.Д. Бартона, У.Д. Оллиса. Нуклеиновые кислоты, аминокислоты, петиды, белки. - М.: Химия, 1986.

10. Филлпович Ю.Б. Основы биохимии: уч. для студ. хим. и биол. спец. пед. инст. М.: Высшая школа, 1985.

Размещено на .ru
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?