Анализ уровня загрязнения тяжелыми металлами почв различных функциональных зон Ростова-на-Дону: парковых зон, авторазвязок, промзон. Рассмотрение и характеристика зависимости уровня биологической активности почв от содержания в почве тяжелых металлов.
Аннотация к работе
Городские почвы испытывают значительный техногенный пресс, составной частью которого является загрязнение тяжелыми металлами (ТМ) [6, 7, 9, 10]. Города являются, с одной стороны, центрами концентрации веществ, поступающих в них с транспортными потоками, перерабатываемыми промышленностью и коммунальным хозяйством, с другой стороны, сами города являются мощными источниками техногенных веществ, включающихся в региональные миграционные циклы [5]. Почва, взаимодействуя с загрязняющими веществами, аккумулирует их и трансформирует техногенные соединения, что находит отражение в изменении степени подвижности металлов в почвах и в изменении фракционного состава их соединений [8]. В качестве объекта исследования выступали почвы различных городских ландшафтов с разной функциональной нагрузкой: промзон, автомобильных перекрестков (авторазвязок) и парковых зон. Превышение ПДК для цинка также было отмечено во всех других образцах, включая образцы из парковых зон: парк «Плевен» - 92 мг/кг, парк «Дружба» - 100 мг/кг, парк «Осенний» - 133 мг/кг, парк ДГТУ - 437 мг/кг, парк Островского - 434 мг/кг.В ряде случаев содержание в почве цинка, мышьяка, меди, свинца и никеля существенно превышает значения предельно допустимой концентрации (ПДК). Установлен допустимый уровень загрязнения (СПЗ от 1-15 усл. ед.) почв парковых зон и автомобильных развязок, умеренно опасный (СПЗ от 16 - 32 усл. ед.) почв промзон города Ростова-на-Дону.
Введение
Городские почвы испытывают значительный техногенный пресс, составной частью которого является загрязнение тяжелыми металлами (ТМ) [6, 7, 9, 10].
На территории крупных городов сконцентрировано большое количество различных источников ТМ (промышленные предприятия, транспорт, котельные, бытовые отходы и др.). Данные территории в настоящее время по интенсивности и площади загрязнения представляют собой техногенные геохимические и биогеохимические провинции.
Существенное значение для формирования геохимического "фона" городских почв имеют длительность и характер промышленного развития города в историческое время. Антропогенное геохимическое воздействие в доиндустриальный период привело к заметному загрязнению почв многих городов тяжелыми металлами. Содержание тяжелых металлов в этих слоях в среднем в 6-8 раз выше фона почвообразующих пород [2].
Города являются, с одной стороны, центрами концентрации веществ, поступающих в них с транспортными потоками, перерабатываемыми промышленностью и коммунальным хозяйством, с другой стороны, сами города являются мощными источниками техногенных веществ, включающихся в региональные миграционные циклы [5]. Это обусловливает разную интенсивность поступления и неоднородность состава загрязняющих почву веществ.
Считается, что среди химических элементов тяжелые металлы являются наиболее токсичными. Согласно классификации Дж. Вуда [3], к наиболее токсичным отнесены следующие химические элементы: Be, Co, Ni, Cu, Zn, Sn, As, Se, Te, Sb, Ag, Cd, Au, Hg, Pb, Sb, Bi, Pt, большинство из которых - металлы. В эту группу отнесены Mn, Zn, Cu, Co, Mo, известные как микроэлементы, но при высокой концентрации этих химических элементов в среде обитания они рассматриваются как тяжелые металлы.
Почва, взаимодействуя с загрязняющими веществами, аккумулирует их и трансформирует техногенные соединения, что находит отражение в изменении степени подвижности металлов в почвах и в изменении фракционного состава их соединений [8].
Ростов-на-Дону является классическим городом-миллионником, крупным промышленным центром юга России, на территории которого расположены предприятия машиностроительной, химической, пищевой промышленности, крупные автомагистрали и другие источники загрязнения окружающей среды ТМ.
Цель работы - исследование влияния загрязнения тяжелыми металлами на эколого-биологические свойства почв г. Ростова-на-Дону.
В соответствии с целью были поставлены следующие задачи: 1. Оценить уровень загрязнения тяжелыми металлами почв различных функциональных зон Ростова-на-Дону (промзон, авторазвязок, парковых зон).
2. Установить закономерности влияния загрязнения тяжелыми металлами на биологические свойства почв: численность и активность микроорганизмов, активность ферментов, фитотоксичность почв и др.
В качестве объектов данного исследования были использованы почвы Ростова-на-Дону. Этот город является мегаполисом с населением свыше 1 млн человек, крупным промышленным центром юга России. Главными отраслями промышленности города являются машиностроение (ОАО «Ростсельмаш», ОАО «Роствертол», ООО «Алмаз», ОАО «Десятый подшипниковый завод» (ГПЗ-10), пищевая («Регата», «Тавр») и химическая («Эмпилс»).
В качестве объекта исследования выступали почвы различных городских ландшафтов с разной функциональной нагрузкой: промзон, автомобильных перекрестков (авторазвязок) и парковых зон.
Отбор 26 образцов в г. Ростове-на-Дону проводили в рекреационных зонах (парк им. Островского, парк им. Вити Черевичкина, парк «Дружба», Студенческий парк ДГТУ, парк «Осенний и др.); в промышленных зонах (район ГПЗ-10, заводы «Эмпилс», «Молот», «Ростсельмаш)) и в зонах максимальной транспортной нагрузки (перекресток пр. Буденовского и ул. Красноармейской, ул. Вятской и ул. 50 лет Ростсельмаш, площадь Гагарина, площадь Энергетиков, площадь Страны Советов и др.).
В качестве фоновой использовали почву ОПХ ДОНГАУ «Персиановская степь» в 40 км от Ростова-на-Дону.
Для исследования использовали общепринятые в биологии почв методы [1]. Обилие бактерий рода Azotobacter учитывали методом комочков обрастания на среде Эшби. Ферментативную активность почв оценивали по активности каталазы и дегидрогеназы. Активность каталазы измеряли по методике Галстяна, дегидрогеназы - по методике Галстяна в модификации Хазиева. Фитотоксичность почв фиксировали по изменению показателей прорастания семян (всхожесть, энергия прорастания, дружность прорастания, скорость прорастания) и интенсивности начального роста растений (длина корней, длина побегов). В качестве тест-объекта использовали редис сорта Корунд.
Для объединения различных биологических показателей была использована методика определения интегрального показателя биологического состояния (ИПБС) почвы[7]. В настоящем исследовании интегральный показатель биологического состояния почвы был рассчитан по следующим показателям: обилие бактерий рода Azotobacter, активность каталазы, активность дегидрогеназы, всхожесть семян редиса.
Для расчета ИПБС значение показателя в фоновой почве принимали за 100 %, а значение показателя в почве г. Ростова-на-Дону выражали в процентах от фона (от 100 %). Затем рассчитывали средние значения пяти выбранных для определения ИПБС биологических показателей. В результате для каждого почвенного образца получали значение ИПБС, которое выражено в процентах по отношению к фону (к 100 %). Использованная методика позволяет интегрировать относительные (процентные) значения разных показателей, абсолютные значения которых не могут быть интегрированы, так как имеют разные единицы измерения.
Для оценки совокупного действия поллютантов в качестве интегрального показателя был применен суммарный коэффициент техногенного загрязнения, рассчитываемый на основе сложения коэффициентов техногенного загрязнения отдельных элементов [11]: Zc=?Kci - (n-1), где ZC - суммарный коэффициент техногенного загрязнения;
n - количество загрязнителей;
Ксі - коэффициент концентрации i-го загрязняющего компонента, равный кратности превышения содержания данного компонента над фоновым значением: Кс=Сі/Сф, где Сі - фактическое содержание i-го элемента в пробе, мг/кг;
Сф - фоновое содержание i-го элемента, мг/кг.
Статистическая обработка данных была проведена с использованием корреляционного анализа. Для проведения математической обработки результатов исследования использовали компьютерную программу Statistica 6.0.
Уровень загрязнения почв Ростова-на-Дону оценивали по содержанию в верхнем слое (0-20 см) почвы валовых форм ТМ и на основе суммарного показателя загрязнения ZC.
Оценка валового содержания ТМ в поверхностном слое почв Ростова-на-Дону показала наличие полиэлементного загрязнения. В городских почвах средние концентрации химических элементов (Cu, Zn, Pb, As) выше значений для естественных почв (табл. 1).
Таблица 1 - Содержание валовых форм ТМ (мг/кг) в почвах разных функциональных зон г. Ростова-на-Дону
Химический элемент Класс опасности ГОСТ 17.4.1.02-83 Фоновая почва Промзоны (n = 4) Автомобильные развязки (n =14) Парковые зоны (n =8) ПДК мг/кг валовое содержание (Водяницкий, 2008)
Zn I 79,7 700,2 (85,6-2462) 254,0 (81,4-327,2) 212,9 (86,3-436,7) 100
As I 7,8 13,6 (8,2-23,6) 13,1 (7,1-19,0) 13,5 (9,2-16,0) 2
Pb II 30,2 36,2 (9,0-82,9) 38,3 (11,4-64,0) 43,5 (20,9-66,7) 30
Cu II 34,9 64,6 (47,0-70,1) 58,6 (43,7-82,3) 58,4 (43,5-76,0) 55
Ni II 22,7 55,2 (37,0-68,7) 57,7 (48,5-61,4) 60,1 (42,5-65,1) 85
Со II 2,1 16,9 (9,2-18,9) 15,3 (12,3-20,5) 15,1 (9,3-21,0) 5
Zc - 19,73 13,12 13,06
Примечание: n - количество участков исследования; Zc - суммарный показатель загрязнения.
В целом оценка полученных концентраций химических элементов в почвах города по шкале опасности загрязнения почв, составленной на основе величин показателя суммарного загрязнения (Zc), выявила допустимый уровень загрязнения (Zc от 1-15 усл. ед.) парковых зон и автомобильных развязок, умеренно опасный (Zc от 16-32 усл. ед.) - промзон города.
Почвы центральной части города загрязнены ТМ больше, чем Западного жилого массива и Северного жилого массива. Это связано с продолжительным воздействием (с конца 19-го века) промышленных предприятий на почву в центре города и влиянием крупных авторазвязок в настоящее время. ростов биологический почва загрязнение
В результате исследования, проведенного в мае 2010 г., было установлено, что в ряде случаев содержание в почве цинка, мышьяка, меди, свинца и никеля существенно превышает значения предельно допустимой концентрации (ПДК). Максимальное превышение ПДК - 2462 мг/кг (в 37 раз) было зафиксировано для цинка в районе завода «Эмпилс», крупнейшего российского производителя декоративных лакокрасочных покрытий и оксида цинка (цинковых белил), расположенного в центре города. Превышение ПДК для цинка также было отмечено во всех других образцах, включая образцы из парковых зон: парк «Плевен» - 92 мг/кг, парк «Дружба» - 100 мг/кг, парк «Осенний» - 133 мг/кг, парк ДГТУ - 437 мг/кг, парк Островского - 434 мг/кг.
Максимальное превышение ПДК (в 2,7 раза) было зафиксировано для меди в районе завода «Эмпилс» - 82,3 мг/кг, высокое содержание меди также было в районе завода «Молот» - 71 мг/кг, на авторазвязке Нагибина / Нариманова - 70,1 мг/кг, где транспортный поток один из самых высоких в городе.
Максимальное превышение ПДК (в 4 раза) было зафиксировано для свинца в районе завода «Эмпилс» - 82,9 мг/кг, и на загруженных транспортным движением автомобильным развязках - на площади Гагарина - 60,7 мг/кг, на пересечении улицы Мечникова и проспекта Буденовского - 63,9 мг/кг, на пересечении улиц Добровольского и Королева - 59,9 мг/кг.
Результаты исследования биологических свойств почв представлены в таблице 2. На основе данных показателей были определены значения ИПБС исследованных почв.
Таблица 2 - Биологические свойства почв разных функциональных зон г. Ростова-на-Дону
Значение ИПБС варьирует от 88 до 56 %. Максимальное значение ИПБС - 82 % характерно для почвы, отобранной в парке «Плевен», 83 % - в парке «Дружба», 88 % - в парке им. В. Черевичкина. Минимальные значения ИПБС - 56 % зарегистрированы в почвах, отобранных около завода «Ростсельмаш», 61 % - около завода «Молот», 62 % - в почве транспортного кольца РИИЖТА.
Вывод
В ряде случаев содержание в почве цинка, мышьяка, меди, свинца и никеля существенно превышает значения предельно допустимой концентрации (ПДК).
Установлен допустимый уровень загрязнения (СПЗ от 1-15 усл. ед.) почв парковых зон и автомобильных развязок, умеренно опасный (СПЗ от 16 - 32 усл. ед.) почв промзон города Ростова-на-Дону.
Уровень загрязнения ТМ почв различных функциональных зон г. Ростова-на-Дону нарастает в ряду: парковые зоны < авторазвязки < промзоны.
Уровень биологической активности почв находится в обратной зависимости от содержания в почве ТМ: промзоны < авторазвязки < парковые зоны.
В большинстве случаев наблюдалась прямая зависимость между концентрацией загрязняющего вещества и степенью ухудшения исследуемых свойств почвы.
Список литературы
Вальков В.Ф., Казеев К.Ш., Колесников С.И. Методология исследования биологической активности почв на примере Северного Кавказа // Научная мысль Кавказа. Изд-во СКНЦВШ. 1999. № 1. С. 32-37.
Евдокимова А.К. Тяжелые металлы в культурном слое средневекового Новгорода. // Вестн. Моск. ун-та. Сер. 5. География, 1986. № 3.
Ильин В.Б. Тяжелые металлы в системе почва - растение. - Новосибирск: Наука, 1991. - 151 с.
Казеев К.Ш., Колесников С.И., Вальков В.Ф. Биологическая диагностика и индикация почв: методология и методы исследований. Ростов н/Д: Изд-во Рост. ун-та, 2003. 204 с.
Касимов Н.С., Перельман А.И. Геохимическая систематика городских ландшафтов // Экогеохимия городских ландшафтов. - М.: Изд-во МГУ, 1995. - С. 13-20.
Колесников С.И., Казеев К.Ш., Вальков В.Ф. Экологическое состояние и функции почв в условиях химического загрязнения. Ростов н/Д: Изд-во Ростиздат, 2006. 385 с.
Колесников С.И., Пономарева С.В., Казеев К.Ш., Вальков В.Ф. Ранжирование химических элементов по степени их экологической опасности для почвы // Доклады РАСХН. 2010. № 1. С. 27-29.
Колесников С.И., Евреинова А.В., Казеев К.Ш., Вальков В.Ф. Изменение эколого-биологических свойств чернозема при загрязнении тяжелыми металлами второго класса опасности (Mo, Co, Cr, Ni) // Почвоведение. 2009. № 8. С. 1007-1013.
Мотузова Г.В. Почвенно-химический экологический мониторинг. М.: Изд-во МГУ, 2001. 86 с.
Приваленко В.В. Геохимическая оценка экологической ситуации в г. Ростове-на-Дону. - Ростов н/Д: МГП Геоинформ, 1993. - 167 с.
Снакин В.В., Присяжная А.А.Экологическая оценка состояния почв: Попытка количественного подхода // Изв. РАН. Сер. биол. - 1995. - № 1. - С. 105.