Применение коротких свай в промышленном и гражданском строительстве. Методы расчета сопротивления коротких забивных свай. Применения численных методов расчета свай и свайных фундаментов. Применение МГЭ в расчетах сопротивления бипирамидальных свай.
Аннотация к работе
МИНИСТЕРСТВО ОБРАЗОВАНИЯ УКРАИНЫ ВИННИЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ На правах рукописи Эль Асади Фади УДК 624.154 Исследование сопротивления вертикальным нагрузкам бипирамидальных свай Специальность 8.0921 - «Строительство». Методы расчета сопротивления коротких забивных свай ................................................................ 1.3. Применения численных методов расчета свай и свайных фундаментов .................................................. Применение МГЭ в расчетах сопротивления бипирамидальных свай ..................................................... 2.1. Расчет бипирамидальных свай на ЭВМ .......................... 2.2.1. Вместе с тем, на основании сравнения технико-экономических показателей вариантов фундаментов мелкого заложения и фундаментов из коротких свай призматической формы выявлено, что свайные фундаменты экономичнее, если глубина заложения фундаментов на естественном основании больше 1,7 ... В связи с этим, забивные сваи нашли широкое применение в жилищном строительстве. Однако, сваи призматической формы при взаимодействии боковой поверхностью с окружающим грунтом, передают незначительные нагрузки. Силы трения мобилизуются не в полной мере, так как при забивке свай, в её верхней части, имеются зазоры на контакте боковой поверхности с грунтом. Как показывает опыт применения пирамидальных свай, конструкции разработанной в Одесском инженерно-строительном институте, их эффективность выше призматических, за счет устранения зазора на контакте и создания нормальных сил при наклоне граней боковой поверхности к вертикали 7 - 11%. Опыт применения призматических свай с забивными оголовками позволил выяснить, что несущая способность такой сваи возрастает не только за счет увеличения площади (забивного оголовка), но изменятся и условия работы грунта, примыкающего к боковой поверхности сваи, силы трения реализуются больше. В настоящее время, действительную работу свай и их оснований возможно решить путем использования усложненных расчетных схем взаимодействия системы свая-основание. Для этого как правило используют современные численные методы: метод конечных разностей (МКР), метод конечных элементов (МКЭ) и метод граничных элементов (МГЭ). Опыт применения призматических свай с забивными уширениями в верхней части ствола сваи (Платонов Ю.Н. [4]) показывает, что данная конструкция фундаментов дает наиболее экономичные решения при залегании однородных и прослойки плотных грунтов с дневной поверхности. При работе свай с шайбой на горизонтальную нагрузку используется отпор уплотненного грунта и сопротивление сваи при этом в четыре раза больше, чем несущая способность обычной сваи (Грутман М.С. [8]). Моргун А.И. [10 - 15] на основании обобщения опыта применения свай с забивными уширениями в верхней части сваи (с еще оголовка, шайбы, плиты, насадки) и своих комплексных полевых исследований совместной работы коротких свай, предложил новую форму сваи, которая состоит из двух пирамидальных элементов. Как показывают экспериментальные исследования, сопротивления бипирамидальных свай имеет величину равную сопротивлению пирамидальных свай тех же размеров (длина, размер поперечного сечения в голове и нижнего конца) и при одинаковых осадках. В дальнейшем были проведены исследования А.А. Луга [2], В.Н. Голубков [16], [17], посвященные определению несущей способности большого числа свай и свайных фундаментов с целью обобщения статических испытаний в различных грунтовых условиях. Применение численных методов для расчета свай и свайных фундаментов Теоретические методы для прогноза поведения прогноза поведения свай и свайных фундаментов развивались на основе использования решений Мелана для плоской задачи и решения Миндлина в случае пространственной задачи.