Принципы построения, виды и функциональные возможности интеллектуальных информационных систем. Методы приобретения знаний. Уровень развития программного обеспечения. Способность информационных систем к адаптации при изменении условий функционирования.
Аннотация к работе
Интеллектуальная система - это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Интеллектуальные системы способны синтезировать цель, принимать решение к действию, обеспечивать действие для достижения цели, прогнозировать значения параметров результата действия и сопоставлять их с реальными, образуя обратную связь, корректировать цель или управление. ИС могут решать интеллектуальные задачи, распознавать ситуации (образы), обучаться понятиям и навыкам, формировать модель обстановки (решаемой задачи), планировать поведение (принимать решение), определять управляющие воздействия и осуществлять их обработку. Таким образом, в некотором роде уровень сложности системы и ее структуры определяет и потенциальный уровень ее интеллекта. Особенность этого управления состоит в том, что оно служит причиной ряда процессов в самой системе и прежде всего процессов внутреннего саморегулирования по законам организации системы.В процессе изучения материала, относящегося к теме данной контрольной работы, я узнала, что такое интеллектуальные системы, как они применяются, способы построения интеллектуальных систем, какие у них функциональное возможности, какие существуют методы приобретения знаний в интеллектуальных системах.
Введение
Мы все с вами живем в 21 веке и для нас уже не удивительно видеть разговаривающие машины (роботы) и все тому подобное. Наши телефоны уже давно могут распознавать нашу речь и выполнять наши просьбы. К примеру, на большинстве телефонов с операционными системами IOS и Android есть функция голосового распознавания и выполнения команд. Мы можем сказать «Позвони маме», «найди ближайший Макдональдс» и телефон выполнит нашу просьбу. Скажи мне об этом 10 лет назад и я бы никогда в это не поверила. Но наука движется вперед и наши друзья-гаджеты становятся с каждым днем все умнее и умнее. Существует множество программ, которые могут решить задачи той или иной сложности, задав ей только условие задачи. К тому же могут вывести несколько вариантов их решения. Вполне возможно, что совсем скоро мы будем общаться и жить с машинами как друг с другом. Для осуществления данной задачи людям помогает еще одно их достижение (открытие)- искусственный интеллект. Искусственный интеллект - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами. Системы Искусственного интеллекта(ИИ) должны воспроизводить функции естественного интеллекта. Поэтому изучению систем ИИ должно предшествовать рассмотрение основных свойств и особенностей естественного интеллекта для того, чтобы понять и использовать свойства биологических систем для решения технических проблем. Кибернетическое изучение живого помогает раскрыть как общие законы функционирования сложных систем, так и частные свойства отдельных органов и организма в целом с точки зрения происходящих в живых, существах информационных процессов и процессов управления.
Новое поколение систем - интеллектуальные системы (ИС). Интеллектуальная система - это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Структура интеллектуальной системы включает три основных блока - базу знаний, решатель и интеллектуальный интерфейс. Это поколение вызвало к жизни другие принципы организации компонентов систем, появились иные понятия, термины, блоки, не встречавшиеся ранее в разработках и, следовательно, в научной литературе. Интеллектуальные системы способны синтезировать цель, принимать решение к действию, обеспечивать действие для достижения цели, прогнозировать значения параметров результата действия и сопоставлять их с реальными, образуя обратную связь, корректировать цель или управление.
ИС могут решать интеллектуальные задачи, распознавать ситуации (образы), обучаться понятиям и навыкам, формировать модель обстановки (решаемой задачи), планировать поведение (принимать решение), определять управляющие воздействия и осуществлять их обработку. Возможности практической реализации. ИС для решения различных задач зависят, прежде всего от производительности современных ЭВМ.
Характерной чертой уже действующих систем, ориентированных в основном на обработку знаний, является высокий уровень развития их программного обеспечения. С его помощью решаются задачи обработки символьной информации, перебора решений вычислительных и логических задач и построения логического вывода решения с использованием заданных систем правил, работы с БД, высокоскоростной обработки изображений, речи и другие. В настоящее время при разработке ИС все чаще используются специализированные аппаратные средства. Реализующие в той или иной степени их основные функции.
1. Принципы построения и организации интеллектуальных систем
Изучение ИС позволяет сделать попытку сформулировать общие принципы, которые, не являясь достаточными, отражают необходимые моменты в их организации и функционировании.
1.1 Принцип системности
ИС могут быть только сложными системами, функции всех их элементов должны быть согласованы с назначением системы и их местом в них, а также между собой. Именно взаимная согласованность и взаимозависимость элементов системы обеспечивает целостность и функциональную полноту наиболее совершенных ИС. Это может также приводить к структурной или функциональной избыточности.
1.2 Принцип иерархичности
Сложная иерархическая многоуровневая структура является основой для одновременного протекания множества процессов. Уровень неординарности итогового процесса зависит от характера совокупности составляющих процессов. Сложная совокупность процессов принципиально характеризуется и сложной структурой. Таким образом, в некотором роде уровень сложности системы и ее структуры определяет и потенциальный уровень ее интеллекта.
1.3 Принцип многоканальности
Получение согласованных с обстоятельствами и средой решений различных задач основывается на информации, получаемой извне по многим каналам и работающим на различных физических принципах, что позволяет иметь разнородную характеристику специальных свойств объектов среды. Комплексирование информационных данных позволяет иметь более объективную и более полную картину о происходящих процессах. Разнородная информация, получаемая по разным каналам, обрабатывается примерно за одинаковое минимально возможное время.
Наглядность этого принципа характеризует следующий факт. Человек способен решать различного рода опознавательные задачи за доли секунды, а зрительная система человека несомненно работает как параллельное устройство, Параллельная обработка как зрительной информации, так и поступающей в мозг человека от других органов чувств, дозволяет реализовать инвариантное опознавание объектов.
1.4 Принцип адаптивности
Принцип адаптивности предполагает наличие у ИС потенциальных возможностей улучшения работы: в условиях априорной и текущей неопределенности на основе обучения на опыте.
Особая роль при этом принадлежит элементам системы - реализующим память.
Адаптация может происходить путем самонастройки, самообучения или самоорганизации. Адаптивные способности могут определяться объемом информации (памятью) системы и потребными затратами времени на ее обработку.
1.5 Принцип взаимности функциональных и структурных свойств
Естественно, что назначение системы, ее функции непосредственно влияют на структуру системы. Однако и структура системы должна способствовать наиболее полной реализации функций.
1.6 Принцип эквифивальности
Этот принцип предполагает наличие у системы множества взаимосогласованных последовательностей реакций на определенные внешние воздействия, приводящих к одному и тому же практически полезному результату.
1.7 Принцип динамического самопрограммирования
Самая замечательная особенность нервного управления, наиболее ярко выраженная в целеустремленном творческом разуме человека, заключается в способности на основании разнообразного анализа ситуаций мгновенно создавать сложнейшие и вместе с тем оптимальные программы деятельности, которые непрерывно перестраиваются и корректируются с учетом прошлых событий, текущей действительности и прогнозирования будущего. Уже образование элементарного условного рефлекса представляет собой выработку новой программы поведения. Усложнение условных рефлексов означает все более высокую самоорганизацию поведенческих программ. В кибернетическом смысле основная функция высшей нервной деятельности состоит в динамическом поведении самопрограммирования.
2. Функциональные возможности интеллектуальных систем
Естественные системы различаются по своей сложности и уровню организации. Понятие об организации системы предполагает определенное согласование состояний и деятельности ее подсистем и составляющих элементов. Это согласование достигается передачей сигналов (сообщений) по внутрисистемным связям, а для поддержания высокого уровня организованности необходимо постоянное общение с окружающим миром. Еще более необходима передача сообщений по внутрисистемным и межсистемным связям для формирования и выдачи командных сигналов при осуществлении актов управления.
Основным свойством естественных ИС является их способность к адаптации при изменении условий функционирования. Способность к адаптации путем самоорганизации основывается как на множественности элементов системы и разветвленности связей между ними, способствующих возникновению целостности, так и на наличии гибкого взаимодействия между элементами по типу обратных связей. Существенным признаком самоорганизации является обособление интеллектуальных систем от окружающей среды.
Функциональной особенностью обособленной ИС является активное взаимодействие ее со средой. Особенности ее структурной организации определяют направление и объем процессов взаимодействия системы со средой. Наличие чрезвычайно разнообразных обратных связей на всех уровнях влияет на интенсивность процессов взаимодействия. Отрицательные обратные связи обеспечивают стабильность функций системы, постоянство ее параметров, устойчивость к внешним воздействиям, Положительные обратные связи играют роль усилителей процессов и имеют особое значение для развития, накопления изменений. Наличие отрицательных и положительных обратных связей приводит к возможности развития по некоторому закону (программе) с использованием внешних ресурсов.
Сложная динамическая (устойчиво неравновесная) организация целенаправленной функционирующей системы требует непрерывного управления, без которого система не может существовать. Особенность этого управления состоит в том, что оно служит причиной ряда процессов в самой системе и прежде всего процессов внутреннего саморегулирования по законам организации системы.
Основными функциями самоорганизующейся системы являются функции информационного обеспечения (ФИО), материального и энергетического обеспечения (ФМЭО), перемещения (ФП) и адаптации (ФА). С точки зрения реализации НИ наибольший интерес представляет ФИО, которая является всеобъемлющей. Информация необходима для контроля внутреннего состояния системы, распознавания ситуаций, решения задачи обеспечения функционирования, выявления закономерностей и обучения. Для последующего использования получаемая информация должна разделяться и откладываться в соответствующие системы памяти (оперативные и долговременные).
Функцию информационного обеспечения реализуют органы контроля окружающей среды, навигации и анализа объектов. Обработка сигналов этих органов информации осуществляется особым управляющим узлом (УУ) (устройством), в котором производится анализ полученных данных, их обработка и обобщение, оценка ситуации и принятие решения. Одновременно ведется обогащение памяти, накопление опыта, обучение и отработка логических методов обработки информации.
3. Методы приобретения знаний
Динамические свойства ИС могут быть описаны в пространстве состояний. Интеллектуальные операторы, реализующие восприятие, представление, формирование понятия, суждения и умозаключения в процессе познания, являются формальным средством обработки сведений и знаний, а также принятия решения. Все эти аспекты должны быть положены в основу построения ДЭС, функционирующих в реальном времени и реальном мире.
Динамическая экспертная система есть некоторое комплексное образование, способное оценивать состояние системы и среды, сопоставлять параметры желаемого и реального результатов действия, принимать решение и вырабатывать управление, способствующее достижению цели. Для этого ДЭС должна обладать запасом знаний и располагать методами решения задач.
3.1 Категории знаний
1) концептуальное (на уровне понятий) знание - это знание, воплощенное в словах человеческой речи или, конкретнее, - в научно-технических терминах и, естественно, в стоящих за этими терминами классах и свойствах объектов окружающей среды. Сюда же входят связи, отношения и зависимости между понятиями и их свойствами, причем связи абстрактные, также выраженные словами и терминами. Концептуальное знание - это сфера, главным образом, фундаментальных наук, если учитывать, что понятие есть высший продукт высшего продукта материи - мозга;
2) фактуальное, предметное знание - это совокупность сведений о качественных и количественных характеристиках конкретных объектов. Именно с этой категорией знания связываются термины «информация» и «данные», хотя такое употребление этих терминов несколько принижает их значение. Любое знание несет информацию и может быть представлено в виде данных; фактуальное знание - это то, с чем всегда имели дело вычислительные машины и с чем они больше всего имеют дело до сих пор. Современную форму накопления данных принято называть базами данных. Конечно, для организации баз данных, для поиска в них нужной информации надо опираться на концептуальное знание;
3) алгоритмическое, процедурное знание - это то, что принято называть словами «умение», «технология» и др. В вычислительном деле алгоритмическое знание реализуется в виде алгоритмов, программ и подпрограмм, но не всяких, а таких, которые могут передаваться из рук в руки и использоваться без участия авторов. Такая реализация алгоритмического знания называется программным продуктом. Наиболее распространенные формы программного продукта - пакеты прикладных программ, программные системы и другие, ориентированные на конкретную область применения ДЭС.
Организация и использование пакетов прикладных программ базируется на концептуальном знании. Ясно, что концептуальное знание является более высокой, определяющей категорией знания, хотя, с точки зрения практики, другие категории могут казаться более важными. Именно поэтому, вероятно, концептуальное знание редко воплощается в форме, доступной для обработки на вычислительных машинах. А если воплощается, то чаще всего неполно и односторонне. Носителем концептуального знания остается в большинстве случаев человек. Это тормозит автоматизацию многих процессов. Представления концептуального знания, а точнее, системы, реализующие все три категории знания, но выделяющие концептуальное знание на первый план и работающие на основе его интенсивного использования, называются базами знаний. интеллектуальный информационный система
4. Виды интеллектуальных систем
4.1 Экспертные системы
Экспертная система (ЭС, expertsystem) - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление.
В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний - как совокупность фактов и правил логического вывода в выбранной предметной области деятельности.
Похожие действия выполняет программа-мастер (wizard). Мастера применяются как в системных программах так и в прикладных для интерактивного общения с пользователем (например, при установке ПО). Главное отличие мастеров от ЭС - отсутствие базы знаний; все действия жестко запрограммированы. Это просто набор форм для заполнения пользователем.
Другие подобные программы - поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие (релевантные) разделы базы статей (представления об объектах областей знаний, их виртуальную модель).
4.2 Гибридные интеллектуальные системы
Под гибридной интеллектуальной системой принято понимать систему, в которой для решения задачи используется более одного метода имитации интеллектуальной деятельности человека. Таким образом ГИС - это совокупность: аналитических моделей, экспертных систем, искусственных нейронных сетей, нечетких систем генетических алгоритмов, имитационных статистических моделей.
4.3 Интеллектуально - информационные системы
Интеллектуальная информационная система (ИИС, англ. intelligentsystem) - разновидность интеллектуальной системы один из видов информационных систем, иногда ИИС называют системой, основанных на знаниях. ИИС представляет собой комплекс программных, лингвистических и логико-математических средств для реализации основной задачи: осуществление поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке
Вывод
В процессе изучения материала, относящегося к теме данной контрольной работы, я узнала, что такое интеллектуальные системы, как они применяются, способы построения интеллектуальных систем, какие у них функциональное возможности, какие существуют методы приобретения знаний в интеллектуальных системах.
В заключении стоит отметить, что интеллектуальные системы все больше проникают в жизнь человека и играют очень важную в ней роль. Со временем я считаю, что интеллектуальные системы будут охватывать все сферы человеческой жизни.
Список литературы
1). В.Б. Кудрявцев. Введение в теорию интеллектуальных систем: Учеб.пособие/МАКСПРЕСС - М., 2006. - 210 с.
2). Л.С. Болотова. Системы искусственного интеллекта. Теоретические основы и формальные модели представления знаний: Учеб.пособие/ МИРЭА.- М., 2001. - 78 с.
3). Гаврилова Т.А., Хорошевский В.Ф. Базы знаний интеллектуальных систем. - СПБ: Питер, 2001.- 384 с.
4). П. Джексон. Введение в экспертные системы.- М.: Изд-во Вильямс, 2001.- 624 с.
5). Искусственный интеллект. Справочник. Книги 1,2,3. -М., 1990
6). Мичи Д., Джонстон Р. Компьютер - творец.- М.: Мир, 1987.- 255 с.
7). Пупков К.А., Коньков В.Г. Интеллектуальные системы. - M.: Изд-во МГТУ им. Н.Э. Баумана, 2003. - 348 с.:ил.