Основы статистики линейных полимерных цепей, гидродинамика растворов полимеров, взаимодействия в цепи. Исследование гидродинамических свойств узкодисперсных образцов полистиролсульфоната в широких интервалах контурных длин и ионных сил растворов.
Аннотация к работе
Эта модель представляет собой цепочку из бестелесных звеньев; каждое из звеньев идеальной цепи соединено с двумя ближайшими по цепи соседями, но не взаимодействует ни с молекулами растворителя, ни с другими звеньями этой же или других макромолекул. Простейшая характеристика пространственного размера полимерной цепи - среднеквадратичной расстояние между ее концами; сравнение размера с контурной длиной характеризует степень свернутости цепи в пространстве. Конформационные свойства цепных молекул, рассмотренные выше, обсуждались в предположении, что взаимодействия между элементами цепи, определяющие ее равновесную жесткость, имеют характер близкодействия, т.е. осуществляются между соседними или близкими элементами в цепи. Основное предположение - изза большего экранирующего действия контрионов заряженные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном сближении в результате флуктуационного изгибания цепи. Заряды, находящиеся на расстоянии вдоль цепи, вызывают дополнительное электростатическое близкодействие, которое приводит к повышению жесткости цепи на величину .Растворы полистиролсульфонатов изучены методом вискозиметрии в водных растворах при различных ионных силах. По экспериментальным значениям коэффициентов седиментации, характеристической вязкости, концентрационного коэффициента седиментации с использованием гидродинамического инварианта А0 и седиментационного параметра bs были рассчитаны молекулярные массы Msh?и Mkss образцов, которые удовлетворительно коррелируют между собой.
Введение
Молекулярные свойства полимеров определяют физико-химические характеристики материалов, изготовленных на их основе. Конформация и размеры молекул ДНК (дезоксирибонуклеиновой кислоты), РНК (рибонуклеиновой кислоты) и белков оказывают прямое влияние на способность этих молекул выполнять свои биологические функции. В связи с этим, изучение молекулярных свойств полимеров имеет принципиальное значение для решения прикладных и фундаментальных задач физикохимии высокомолекулярных соединений, биофизики, химии, фармакологии и др.
Важнейшее свойство полимерных молекул - их способность сворачиваться, изменять свою конформацию от палочкообразной до клубковой при увеличении длины полимерной цепи, определяется их равновесной жесткостью.
Для определения конформационных характеристик полимерных цепей, к которым в первую очередь относится их равновесная жесткость, разработан ряд физических методов, основанных на измерении поступательного и вращательного трения макромолекул. К числу этих методов следует отнести вискозиметрию, седиментацию и изотермическую поступательную диффузию, динамическое рассеяние света, электрическое и динамическое двойное лучепреломление и ряд других.
Целью настоящей работы было исследование гидродинамических свойств узкодисперсных образцов полистиролсульфоната в широких интервалах контурных длин и ионных сил растворов.
1. Теоретическо-литературный обзор
1.1 Основы статистики линейных полимерных цепей
Полимерные молекулы в основном являются цепями атомов, соединенных простыми (единичными) связями одинаковой длины ? и образующих друг с другом валентный угол и. Тепловое движение составляющих полимерную цепь атомов, проявляющееся во вращении их вокруг направления валентных связей, должно приводить к значительной свернутости цепи. Клубкообразная структура не является единственно возможной для макромолекул. В определенных случаях силы, действующие между соседними атомами цепи, столь велики, что тепловое движение не может привести к изгибанию и скручиванию цепи. При этом макромолекула имеет палочкообразную конформацию. Существенную роль в стабилизации такой конформации играют водородные связи, действующие между несоседними атомами цепи и приводящие к образованию внутримолекулярной структуры. В других случаях макромолекула принимает форму жесткой глобулы, имеющей приблизительно сферическую форму.
1.1.1 Идеальная полимерная цепь
Модель идеальной макромолекулы играет в физике полимеров такую же роль, как представление об идеальном газе в обычной молекулярной физике. Эта модель представляет собой цепочку из бестелесных звеньев; каждое из звеньев идеальной цепи соединено с двумя ближайшими по цепи соседями, но не взаимодействует ни с молекулами растворителя, ни с другими звеньями этой же или других макромолекул. Так же как существует много идеальных газов (одноатомный, двухатомный и т.д. - важно лишь, чтобы молекулы не взаимодействовали друг с другом), так есть и целый ряд моделей идеальных цепей; они различаются структурой звеньев и устройством связей между ближайшими соседями, но «идеальность» во всех случаях состоит в отсутствии объемных взаимодействий. Круг реальных условий, при которых молекулы ведут себя как идеальные, не очень широк - в основной это разбавленные растворы полимеров в так называемых ?-растворителях, а также полимерные расплавы. Тем не менее, идеальные модели очень полезны, так как позволяют составить правильное представление о характере теплового движения макромолекул, другими словами - об энтропийных свойствах полимерного вещества.
1.1.2 Свободно-сочлененная цепь
Для описания конформационных свойств полимерных молекул важное значение имеет модель свободно-сочлененной цепи, введенная в рассмотрение и разработанная Куном и Марком. В этой модели реальная полимерная цепь заменяется эквивалентной, состоящей из N прямолинейных сегментов длиной A, пространственные ориентации которых взаимно независимы. Полная длина эквивалентной цепи L принимается равной длине полностью вытянутой (без деформации валентных углов) реальной цепи (контурная длина):
Вторым необходимым условием, которому должна удовлетворять модельная эквивалентная цепь, является совпадение ее начала и конца с началом и концом реальной цепи при любой конформации последней. Таким образом, длина вектора h, соединяющего концы цепи, имеет одно и то же значение для реальной и модельной цепей. Величина h служит важнейшей характеристикой конформационных свойств полимерной цепи. Простейшая характеристика пространственного размера полимерной цепи - среднеквадратичной расстояние между ее концами; сравнение размера с контурной длиной характеризует степень свернутости цепи в пространстве.
Гибкость полимерной цепи ведет к тому, что макромолекулы никогда не имеют прямолинейной формы - напротив, любая достаточно длинная цепь, извиваясь, в любой момент имеет форму случайного запутанного клубка. Размер клубка в пространстве не характеризуется контурной длиной цепи, различие этих величин определяется тем, насколько свернута цепь. Именно поэтому необходимо обсуждать вопрос о размерах клубкообразных конформаций цепей. Для характеристики степени гибкости макромолекулы можно наряду с персистентной длиной использовать величину сегмента Куна.
Поскольку ориентации сегментов свободно сочлененной цепи взаимно независимы, они могут являться объектом применения статистического метода.
Развитие статистики полимерных цепей на основе свободно-сочлененной модели привело к установлению важной закономерности - гауссова распределения расстояний h в ансамбле длинных цепных молекул (каждая длиной L):
Здесь W(h) dh - вероятность того, что для произвольно выбранной из ансамбля цепи (состоящей из N сегментов длиной A) расстояние между ее концами лежит в пределах от h до h dh. Цепи, удовлетворяющие этому распределению, называются гауссовыми. Из этой формулы может быть получен любой из моментов распределения W(h).В частности, для среднего квадрата h получается величина
Отсюда следует, что средний квадрат расстояния между концами гауссовой цепи равен
Т.е. пропорционален ее контурной длине L. Это свойство является основным для гауссовых цепей. Из последнего равенства следует, что линейные статистические размеры гауссовой цепи (характеризуемые величиной 1/2) при заданной контурной длине L пропорциональны корню квадратному из длины сегмента Куна A. Длина статистического сегмента служит мерой равновесной жесткости (гибкости) полимерной цепи.
1.2.3 Гибкость полимерной цепи
Любая полимерная макромолекула обладает гибкостью, но механизм гибкости у разных полимеров разный.
Гибкость свободно-сочлененной цепи обусловлена шарнирными сочленениями между жесткими сегментами. Можно сказать, что вся гибкость сосредоточена в точках сочленений. Этот так называемый свободно-сочлененный механизм гибкости наиболее прост для описания, но химически его реализовать трудно, и встречается он редко. Тем не менее, существенной гибкостью обладают все достаточно длинные полимерные цепи, и причина этого заключена как раз в большой их длине.
Допустим, что абсолютному минимуму энергии соответствует прямолинейная конформация цепи и что все звенья и связи по своей химической природе очень жесткие, так что тепловая энергия возбуждения приводит лишь к малой деформации их стереохимической структуры. При малых деформациях атомный каркас молекулы можно рассматривать как классическую упругую конструкцию, т.е. для полимера - как упругую однородную нить, подчиняющуюся при деформации закону Гука. Такую модель полимера цепи называют персистентной или червеобразной моделью.
1.2.4 Персистентная (червеобразная) модель Порода
Для описания конформационных свойств жесткоцепных молекул наиболее подходящей является модель персистентной, или червеобразной цепи Кратки-Порода, в которой в отличие от свободно-сочлененной цепи Куна учитывается ориентационное близкодействие элементов, составляющих цепь. В основе модели Порода (так же как и в модели Куна) лежит цепь длиной L, состоящая из n прямолинейных участков длиной ?L, так что L=N?L. Однако в отличие от свободно-сочлененной цепи пространственные ориентации соседних элементов здесь не вполне взаимно независимы - направление первого элемента в определенной мере передается по цепи. Корреляция между элементами выражается в том, что среднее (по всем конформациям) значение угла между соседними элементами не равно нулю и одинаково для всех элементов цепи (в случае свободно-сочлененной цепи k=0). Таким образом, совокупность величин ?L и k является мерой ориентационного близкодействия, т.е. корреляции для персистенции в цепи. В итоге, угол между элементами 1 и n определяется соотношением здесь a - длина персистенции.
Если, оставляя постоянными значения L и a, перейти к пределу ?L>0 (тогда ), то изломанная персистентная цепь превращается в непрерывную червеобразную цепь, которая определяется соотношением
Таким образом, кривизна червеобразной кривой одинакова во всех ее точках, определяясь величиной , тогда как направления искривлений в этих точках хаотичны. Иными словами, червеобразную цепь можно охарактеризовать как пространственную линию постоянной кривизны.
1.2.5 Влияние эффектов исключенного объема
По сравнению с идеальной макромолекулой, свойства реальных полимерных систем с объемными взаимодействиями намного разнообразнее. Именно они представляют наибольший интерес и с теоретической, и с практической точки зрения. Однако, как правило, прямому теоретическому исследованию из первых принципов объемные эффекты не поддаются. В этой ситуации, как всегда в теоретической физике, решающую роль приобретает выбор удачных моделей исследуемого объекта и разработка соответствующих модельных представлений.
Конформационные свойства цепных молекул, рассмотренные выше, обсуждались в предположении, что взаимодействия между элементами цепи, определяющие ее равновесную жесткость, имеют характер близкодействия, т.е. осуществляются между соседними или близкими элементами в цепи. Это подразумевается самим представлением о существовании персистенции цепи.
Однако, поскольку всякая реальная цепная молекула имеет большую или меньшую гибкость, при ее тепловом движении всегда возможны случайные сближения атомов и групп, значительно удаленных друг от друга по цепи. При таких сближениях неизбежно возникновение взаимодействия между сблизившимися элементами цепи, имеющего характер их взаимного отталкивания, тем большего, чем больший эффективный объем занимает взаимодействующая пара элементов («исключенный объем»). Эти взаимодействия, являющиеся взаимодействиями дальнего порядка, принято называть эффектами исключенного объема, поскольку в их основе лежит невозможность для двух элементов цепи одновременно занимать в пространстве один и тот же элемент объема. Эффекты исключенного объема возмущают конформацию клубкообразной молекулы, приводя (в силу возникающих отталкиваний) к увеличению средних расстояний между ее элементами, в том числе и к увеличению и (радиус инерции цепи). Количественно эти возмущения характеризуют коэффициентами ?h и ?R линейного увеличения размеров молекулярного клубка, определяемыми соотношениями
Здесь и - средний квадрат расстояния между концами цепи и ее радиус инерции в отсутствие объемных эффектов; и - те же величины, возмущенные объемными эффектами.
Конформации реальных полимерных молекул изучаются в разбавленных растворах, где объемные эффекты существенно зависят от взаимодействий молекул полимера с молекулами растворителя и для одного и того же полимера могут быть весьма различны в различных растворителях. Подбором достаточно «плохого» растворителя и соответствующей температуры («?-температуры») влияние конечного объема мономерной единицы можно скомпенсировать взаимным притяжением единиц цепи. В этих условиях эффекты исключенного объема отсутствуют, в равенствах (13,14) коэффициенты . С улучшением термодинамического качества растворителя и соответствующим усилением взаимодействий полимер-растворитель притяжение между элементами цепи не в состоянии компенсировать их отталкивания, эффект исключенного объема увеличивается и ? становится больше единицы. Причем возмущенные размеры молекул и растут быстрее, чем пропорционально длине цепи L. В итоге получаем в грубом приближении где е > 0.
Также стоит отметить, что при характеристике конформационных свойств полимерных молекул в разбавленных растворах учет влияния объемных эффектов имеет важнейшее значение, так как размеры этих молекул в хороших растворителях могут в несколько раз превосходить их невозмущенные размеры. Поэтому количественное определение параметров равновесной жесткости цепей неизбежно связано с исключением влияния объемных эффектов путем использования ?-растворителей или применением процедур экстраполяции экспериментальных данных на область низких молекулярных весов.
Стоит также отметить, что влияние эффектов исключенного объема на конфигурацию молекул жесткоцепных полимеров значительно слабее, чем в случае гибкоцепных полимеров. Это исходит из того факта, что меньшая свернутость цепи жесткоцепной молекулы в растворе естественно должна уменьшать вероятность контактов между ее элементами, удаленными по цепи.
Макромолекулы приобретают ряд характерных электрических, конфигурационных и гидродинамических свойств, если мономерные звенья полимерной цепи содержат ионногенные группы. Такие полимеры называются полиэлектролитами. Макромолекула полиэлектролита в растворе состоит из полииона, окруженного эквивалентным количеством противоионов (малых ионов с зарядами противоположного знака). Размеры полииона на несколько порядков больше, чем противоионов.
1.1.3 Классификация полиэлектролитов
Полиэлектролиты делятся на поликислоты, полиоснования и полиамфолиты.
Классические представители поликислот - полиакриловая и полиметакриловая кислоты. В водном растворе благодаря ионизации карбоксильных групп между мономерными звеньями возникают силы электростатического отталкивания. Они будут тем сильнее, чем выше степень ионизации, зависящая от PH среды. Степень ионизации может быть повышена при превращении поликислоты в соль, например при обработке поликислоты щелочью. Степень ионизации полученных таким образом полимерных солей значительно выше, чем исходных поликислот. В кислой области PH карбоксилы остаются практически неионизованными, и поведение макромолекул ничем не отличается от поведения макромолекул обычного линейного полимера. Однако в нейтральной или щелочной области появление множества одноименно заряженных групп в молекуле (карбоксилатных ионов, - COO-) и соответствующих сил электростатического отталкивания приводит к развертыванию макромолекулярных цепей и к сильному увеличению размеров клубков; при этом возникают своеобразные концентрационные эффекты, проявляющиеся при измерениях вязкости, седиментации и диффузии.
К рассматриваемому классу поликислот относятся также многие полимеры биологического происхождения. Здесь стоит назвать в первую очередь нуклеиновые кислоты - ДНК и РНК, передающие генетическую информацию.
Другой класс полиэлектролитов - полиоснования. Конфигурационные свойства полиоснований аналогичны свойствам поликислот. В частности, полиоснования, как и поликислоты, сильнее ионизованы в солевой форме.
Сочетание кислотных и основных групп в одной цепи приводит к образованию полиамфолитов, составляющих третий класс полиэлектролитов. Для каждого полиамфолита существует определенное, зависящее от его состава, значение PH, при котором количества положительных и отрицательных зарядов в цепи равны. Иными словами, суммарный заряд полиамфолита в этой изоэлектрической точке (ИЭТ) равен нулю. При PH ниже ИЭТ в цепи начинают доминировать положительные заряды. При достаточно низком PH ионизация всех кислотных групп оказывается подавленной и полиамфолит превращается в полиоснование. Наоборот, по мере повышения PH над ИЭТ полиамфолит постепенно превращается в поликислоту. Полиамфолиты играют огромную роль в природе: все белки относятся к полиамфолитам.
1.1.4 Размеры полиэлектролитов
Размеры полииона в водных растворах сильно зависят от наличия кулоновских взаимодействий (отталкивания одноименно заряженных групп в макромолекуле и притяжения контрионов к полииону). Благодаря электростатическому отталкиванию между одноименно заряженными ионногенными группами макромолекула полиэлектролита стремиться развернуться и приобрести более асимметричную форму по сравнению с формой статистического клубка, характерной для незаряженных цепей. Поэтому в растворах полиионы имеют большие размеры и асимметрию.
Также размеры полииона сильно зависят от линейной плотности заряда. Разворачивание цепи проявляется в возрастании приведенной вязкости при уменьшении концентрации (полиэлектролитный эффект). Это объясняется тем, что при разбавлении растворов полиэлектролитов увеличивается объем, в котором распределяются контрионы, экранирующие кулоновское отталкивание между фиксированными зарядами полииона, вследствие чего возрастает их отталкивание и происходит развертывание полииона.
Конформация полиэлектролита определяется также наличием в растворе низкомолекулярных электролитов, например солей. Наличие таковых приводит к экранированию зарядов полииона. При значительных концентрациях (например, больше 0.1 М), вклад кулоновских взаимодействий существенно ослабевает, и размеры цепей сопоставимы с размерами неоинногенных цепей той же природы.
1.1.5
Линейная плотность заряда, конденсация контрионов, полиэлектролитное набухание
Полиэлектролиты обладают способностью специфически связывать контрионы (образование ионных пар между заряженными группами полиэлектролита и контрионами, ионных тройников и более сложных комплексов). Теория Дебая-Хюккеля, строго говоря, неприменима к полиэлектролитам. Дело в том, что при не очень малых степенях ионизации электростатическое поле вокруг молекулы полиэлектролиты велико, его энергия в несколько раз больше тепловой.
П. Флори построил теорию на основе объемных эффектов [8]. Электростатическое отталкивание приводит к набуханию клубка, зависящему от ионной силы. Флори предполагал, что клубок вместе с окружающим его растворителем электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую молекулу, происходит лишь набухание.
О.Б. Птицын развил более строгую теорию [9]. Основное предположение - изза большего экранирующего действия контрионов заряженные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном сближении в результате флуктуационного изгибания цепи. Также, из этой теории следует, что конформационные свойства заряженных макромолекул промежуточны между свойствами ненабухших клубков и жестких стержней.
Макромолекула связывает контрионы. Поэтому полиион при взаимодействии с другими полиионами ведет себя как нейтральная система. Контрионы могут специфически связываться ионизованными группами полиэлектролита. Следует отличать это связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания - образования ионной атмосферы. В солевой связи контрион находится на значительно меньшем расстоянии от полииона, чем то, на которое могут приблизиться подвижные контрионы.
В растворе достаточно сильно заряженных полиэлектролитов часть контрионов удерживается в непосредственной близости к полимерным цепям, эффективно нейтрализуя их заряд - это конденсация контрионов.
Для слабо заряженных полиэлектролитов выраженная конденсация происходит только в плохом растворителе, где блобы (определение блоба исходит из того условия, что внутри блоба цепочка остается невозмущенной) глобулярны и является лавинообразным процессом, приводящим к практически полному осаждению контрионов на молекулах.
Далее следует рассмотреть исследованное как экспериментально, так и теоретически так называемое полиэлектролитное набухание. Причина полиэлектролитного набухания - электростатическое отталкивание одноименно заряженных звеньев цепи, приводящее к развертыванию клубков и увеличению их линейных размеров. Поскольку о размерах макромолекул можно судить по характеристической вязкости [?], пропорциональной объему клубков, первые оценки полиэлектролитного набухания были произведены по измерениям [?] в зависимости от степени ионизации. Было показано, в частности, что при полной ионизации полиметакриловой кислоты [?] может возрасти на два порядка, чему соответствует увеличение линейных размеров клубков в 5-6 раз. Однако при этом сразу возникает вопрос, в какой степени полиэлектролитное набухание можно считать изотропным?
Одна из первых теорий эффекта полиэлектролитного набухания принадлежит А. Качальскому и Лифсону [10]. Они полагали, что функция распределения расстояний между концами заряженной цепи имеет вид где индекс «0» соответствует незаряженной цепи, а - электростатическая энергия цепи, вычисляемая как сумма энергий отталкивания всех пар заряженных звеньев. В первоначальном варианте теории, принадлежащем Качальскому, Кюнцле и В. Куну [11], экранирование электростатических взаимодействий, обусловленное образованием дебай-хюккелевской атмосферы противоионов вокруг заряженных групп цепи, не принималось во внимание. Основанием для подобного пренебрежения было следующее неправильное (как было установлено позже) допущение. Плотность атмосферы противоионов, характеризуемая параметром ? в теории Дебая-Хюккеля, определяется ионной силой раствора ?:
- заряд электрона, - валентность иона сорта , - число таких ионов в 1 см3, е - диэлектрическая проницаемость раствора.
Если потенциальная энергия кулонова взаимодействия двух полностью изолированных ионов равна то в среде, содержащей ионы противоположного знака (противоионы), благодаря образованию облака противоионов вокруг каждого иона энергия взаимодействия ослабевает и определяется выражением
Здесь - сумма вандерваальсовых радиусов ионов. Параметр ч имеет геометрический смысл обратной величины эффективного радиуса ионной атмосферы, определяя расстояние от иона, за пределом которого осуществляется полное экранирование взаимодействий.
Качальский, Кюнцле и Кун предположили, что при очень большом разбавлении множитель Дебая-Хюккеля можно принять равным единице, так как противоионы равномерно распределены в объеме раствора, тогда как заряды сосредоточены в малых дискретных областях, занятых макромолекулами. При этом экранирование действительно практически не должно иметь места, и при расчете можно пользоваться кулоновым потенциалом. Полагая, что W0(h) - гауссова функция, они получили:
где n - число ионногенных групп в макромолекуле, т.е. в случае гомополимеров степень полимеризации, а i - степень ионизации, определяемая значением PH среды.
Это соотношение предсказывает анизотропное развертывание цепочек с переходом к практически полностью вытянутым конфигурациям. Предположение ?=0, сделанное при выводе этого уравнения, оказалось неверным потому, что на самом деле противоионы не распределены равномерно по объему раствора, а удерживаются электростатическим полем клубка. Кроме того, следует учитывать хотя и слабую, но все же конечную диссоциацию воды.
1.1.6 Электростатический вклад в равновесную жесткость
В теории полиэлектролитов рассматриваются две характеристические длины - радиус Бьеррума и радиус экранирования Дебая-Хюккеля . Радиус Бьеррума характеризует экранирующее действие растворителя. Радиус экранирования Дебая - Хюккеля - расстояние, на котором распространяется действие электрического поля отдельного заряда, помещенного в среду, содержащую другие заряды. Здесь - элементарный заряд, - электрическая постоянная, - диэлектрическая проницаемость среды, - ионная сила раствора, - число - тых ионов в единице объема, - заряд -того иона в единицах .
Заряды, находящиеся на расстоянии вдоль цепи, вызывают дополнительное электростатическое близкодействие, которое приводит к повышению жесткости цепи на величину . Последняя зависит от линейной плотности заряда и ионной силы раствора.
2. Вискозиметрия и поступательное трение цепных молекул
2.1 Гидродинамика растворов полимеров, взаимодействия в цепи полимерный гидродинамика полистиролсульфонат раствор
При движении полимерной молекулы в растворителе сопротивление, испытываемое ею со стороны последнего, зависит от размеров и формы молекулы, поэтому изучение этого сопротивления может дать информацию о конформационных характеристиках полимерной цепи. В качестве основных явлений, используемых с этой целью, обычно служит поступательное и вращательное трение макромолекул, проявляющееся при диффузии, седиментации и вискозиметрии полимерных растворов. При этом для количественной интерпретации экспериментальных данных на молекулярном уровне применяются теории, связывающие конформационные характеристики молекул с их гидродинамическими свойствами, изучаемыми в растворе. В каждой теории исследуемая полимерная молекула моделируется телом той или иной конфигурации, поступательное и вращательное трение которого в растворителе описывается с применением законов гидродинамики макроскопических тел в вязкой среде.
Строгое решение гидродинамических задач о поступательном и вращательном движении было получено лишь для модели сплошного шара и эллипсоида вращения (сфероида). Что касается жесткоцепных полимеров, моделируемых червеобразной цепью, асимптотическим пределом которой при L/A>0 является прямая палочка, то в этих предельных условиях вытянутый эллипсоид вращения может служить довольно хорошей моделью для описания гидродинамических свойств жесткоцепных молекул. Таким образом, основные уравнения теории поступательного и вращательного трения эллипсоидов вращения имеют непосредственное отношение к гидродинамическим свойствам жесткоцепных макромолекул.
2.1.1
Поступательное трение
Количественной характеристикой трения при поступательном движении тела в окружающей его жидкости является коэффициент поступательного трения , определяемый выражением где - скорость движения теля, вызванного действием силы . Направление совпадает с направлением
Строгое решение уравнений гидродинамики Навье-Стокса для простейшего случая движения шара в вязкой жидкости приводит к формуле где - коэффициент вязкости окружающей жидкости; - диаметр шара.
Это выражение получено при введении ряда предположений, основными из которых являются отсутствие скольжения на границе сферической частицы и окружающей жидкости, достаточно большие размеры частиц, чтобы окружающую жидкость (растворитель) можно было рассматривать как сплошную среду, отсутствие взаимодействия между частицами.
2.1.2 Вращательное трение
Вращательное трение сферического тела в вязкой среде с позиции классическое гидродинамики было изучено еще Стоксом, показавшим, что при вращении сплошного шара вокруг оси, проходящей через центр, с угловой скоростью в вязкой жидкости, он испытывает силы вращательного трения, момент которых пропорционален :
Коэффициент пропорциональности W - коэффициент вращательного трения шара. Он пропорционален объему шара V и вязкости растворителя ?0, согласно равенству где a - диаметр шара.
Для вытянутых эллипсоидов вращения ( )
2.1.3 Основные понятия, характеристическая вязкость. Вискозиметрия полиэлектролитов
Характеристическая вязкость является одной из самых широко используемых молекулярно-гидродинамических характеристик полимеров. Это объясняется ее информативностью, а также сравнительной простотой и доступностью метода.
Характеристическая вязкость раствора высокомолекулярного вещества [?] имеет размерность удельного объема и служит мерой дополнительных потерь энергии, связанных с вращением макромолекул в потоке.
Внутреннее трение или вязкость всякой жидкости проявляется в тех случаях, когда она находится в состоянии потока с отличным от нуля градиентом скорости. Простейший пример такого потока - ламинарный поток с постоянным градиентом скорости , направление которого нормально направлению скорости. Скорость жидкости при этом определяется выражениями
Чем больше внутреннее трение в жидкости, тем большее напряжение сдвига ? нужно приложить, чтобы поддерживать поток с заданным градиентом скорости . Последнее выражается формулой Ньютона:
Коэффициент пропорциональности ? называют коэффициентом вязкости или просто вязкостью жидкости. Жидкости, для которых ? не зависит от ?, называют ньютоновыми.
Определение характеристической вязкости вытекает из выражения где - удельная вязкость раствора.
Можно также утверждать, что независимо от модельных свойств частиц (макромолекул), характеристическая вязкость раствора во всех случаях является мерой потерь энергии, вызванных вращением частиц в среде растворителя. Именно поэтому она связана с вращательной подвижностью частицы, а также пропорциональна удельному объему частицы в растворе.
Более или менее строгие теории вязкости растворов цепных молекул (Кирквуда - Райзмана, Зимма) приводят при достаточно большом числе сегментов в макромолекуле к совпадающему результату - соотношению со значением коэффициента 1/моль.
Для гауссовых клубков и последнее уравнение переходит в [?]=K?MA с a=0.5. Такая зависимость характеристической вязкости действительно наблюдается в идеальных растворителях.
2.1.4 Теория вращательного трения для моделей червеобразного ожерелья и персистентного цилиндра. Червеобразное ожерелье
Вращательное трение червеобразной цепи было рассмотрено Хирстом, использовавшим и развившим формализм, разработанный Кирквудом, в его теории вращательного трения палочкообразного ожерелья.
Положение центров гидродинамического сопротивления (бусинок) с коэффициентом трения ж в используемой Хирстом модели определяется в молекулярной системе координат XYZ, начало которой совмещено со средней точкой молекулярной цепи, а направление оси Z совпадает с направлением цепи в этой точке. Предполагается цилиндрически-симметричное распределение элементов цепи с осью симметрии Z. Применяя методы, разработанные для червеобразной цепи, Хирст вычислил - средние квадраты координат - го элемента цепи, удаленного по контуру цепи на расстояние Li от начала координат:
Эти выражения в области малых переходят в соотношения
Откуда, при следует и , что соответствует конформации прямой тонкой палочки. В области следует , что соответствует гауссову клубку с распределением сегментов, в средней сферически-симметричным относительно средней точки цепи.
Окончательные выражения для коэффициента вращательного трения W червеобразной цепи при ее вращении вокруг оси X или Y Хирст получает для двух предельных случаев.
Для коротких цепей, когда (слабо изогнутая палочка):
Для длинных цепей, когда (червеобразный клубок),
Если выразить через диаметр эквивалентной стоксовой сферы и принять модель червеобразного ожерелья с соприкасающимися бусами , то последние выражения трансформируются в выражения
Эти выражения отличаются от формул Кирквуда для палочкообразного ожерелья наличием члена, пропорционального . Этот член характеризует уменьшение вращательного трения слабо изогнутой палочки по сравнению с прямолинейной за счет ее гибкости.
Эта молекулярная модель была использована также при вычислении характеристической вязкости червеобразной цепи. Поскольку применяемая модель молекулы асферична, необходимо определит функцию с распределения молекул по ориентациям в сдвиговом поле потока. С этой целью решается уравнение вращательной диффузии, полученное Петерлином
Полученное решение, как и следовало ожидать для молекул с цилиндрической симметрией, совпадает с результатом Петерлина. Выражения для характеристической вязкости в предельных случаях короткой и длинной червеобразной цепи, согласно Хирсту и Тагами, имеют следующий вид:
Первое из которых при очень больших значениях (тонкая червеобразная цепь) и переходит в формулу Кирквуда для палочкообразного ожерелья с соприкасающимися бусами.
Все это показывает, что модель ожерелья, введенная Кирквудом для описания гидродинамического взаимодействия и характеристики гидродинамических свойств цепных молекул, может быть использована в применении к макромолекулам с различной конформацией - от прямолинейной палочки до гауссова клубка. При этом оказывается, что при увеличении длины молекулярной цепи для палочкообразных молекул гидродинамическое взаимодействие растет пропорционально логарифму их длины, а для гауссовых клубков - пропорционально корню квадратному из длины цепи.
Персистентный цилиндр
Под червеобразным (персистентным) цилиндром понимают цилиндр, изогнутый таким образом, что форма его осевой линии описывается уравнением червеобразной цепи и соответственно расстояние между любыми двумя его точками на осевой линии определяется по формуле
Гидродинамическое сопротивление, испытываемое таким телом при его движении в вязкой жидкости, вычисляется методом Озеена - Бюргерса.
Теория характеристической вязкости раствора жесткоцепных молекул на основе модели червеобразного цилиндра была разработана Ямакавой, применившим для этой цели метод Озеена - Бюргерса.
В первоначальном варианте были проведены вычисления характеристической вязкости без учета краевых эффектов. В дальнейшем они были дополнены теорией, учитывающей края червеобразного цилиндра, что существенно для области малых значений , когда молекула имеет форму слабоизогнутой палочки конечной толщины . Таким образом, для этой области фрикционные свойства молекул могут быть описаны комбинацией теории прямого сфероцилиндра, учитывающей конечность , и теории червеобразного цилиндра, учитывающей гибкость (конечную величину ) молекулярной цепи.
Пропуская все вычисления, можно сказать, что для червеобразного сфероцилиндра (при L/A>>1) с хорошим приближением может быть использовано выражение
В заключении необходимо сказать, что для одних и тех же экспериментальных данных ( , и ) модель червеобразного цилиндра приводит к несколько меньшим значением A и несколько большим значениям d по равнению с тем, что можно получить, использую модель червеобразного ожерелья.
2.1.5
Эффект исключенного объема
Для типичных жесткоцепных полимеров в практически доступной области молекулярных весов даже в термодинамически хороших растворителях эффекты исключенного объема не оказывают существенного влияния на размеры молекул, а потому не должны влиять и на их гидродинамические свойства.
Однако в принципе при изучении жесткоцепных полимеров очень высокого молекулярного веса не исключена возможность такого влияния.
Поступательное трение жесткоцепного полимера, моделируемого червеобразным ожерельем с учетом эффектов исключенного объема, вычислялось в работе Грея-Блюмфельда-Хирста [6]. Вычисления проводились с использованием параметра е, характеризующего отклонение статистических размеров цепи от гауссовых свойств за счет объемных эффектов. Второй момент распределения по расстояниям в гауссовых цепях, возмущенных объемными эффектами, связан с невозмущенной величиной (в ?-условиях) соотношением
Для коэффициентов поступательного трения в области больших , в итоге, было получено выражение где функция табулирована в работе [6].
Таким образом, при наличии эффектов исключенного объема в области больших соотношение линейно относительно .
2.1.6
Использование данных вискозиметрии для определения молекулярного веса и размеров макромолекул
Сравнительная простота измерений вязкости делает определение молекулярного веса по данным вискозиметрии одним из самых распространенных и доступных методов исследования полимеров. С другой стороны, однако, следует иметь ввиду, что этот метод не является абсолютным и нуждается в градуировке. При этом не всякие определения молекуляр
Вывод
1. Растворы полистиролсульфонатов изучены методом вискозиметрии в водных растворах при различных ионных силах.
2. Проведен седиментационный анализ образцов в 0.2 М NACL.
3. По экспериментальным значениям коэффициентов седиментации, характеристической вязкости, концентрационного коэффициента седиментации с использованием гидродинамического инварианта А0 и седиментационного параметра bs были рассчитаны молекулярные массы Msh?и Mkss образцов, которые удовлетворительно коррелируют между собой.
4. Получены соотношения Куна-Марка-Хаувинка-Сакурады для образцов полистиролсульфонатов при различных ионных силах.
5. На основе теории Грея-Блюмфельда-Хирста проведены оценки длины статистического сегмента Куна и гидродинамического диаметра молекул полистиролсульфонатов в растворах. Проведено сравнение с литературными данными.
Список литературы
1. Цветков В.Н. Жесткоцепные полимеры. М.: Наука, 1986.
2. Павлов Г.М., Зайцева И.И., Губарев А.А., Гаврилова И.И., Панарин, Е.Ф. // Журнал прикладной химии. 2006. т. 79. вып. 9, С. 1506-1509.
3. Павлов Г.М., Губарев А.А., Зайцева И.И., Сибилева М.А. // Журнал прикладной химии. 2006. т. 79. вып. 9, С. 1423-1428
4. Павлов Г.М., Зайцева И.И., Губарев А.С., Корнеева Е.В., Гаврилова И.И., Панарин, Е.Ф. // ДАН РАН 2008. т. 419, N6
5. Цветков В.Н., Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964.
6. Gray G., Bloomfield V., Hearst J. // J. Chem. Phys. 1967. V. 46