Основные понятия производственного процесса, его этапы и периоды развития. Классификация производственных систем. Основные характеристики ГАП: производительность, гибкость, эффективность работы. Классификация станочной системы и применяемое оборудование.
Аннотация к работе
В нашей стране широкое распространение получили автоматические поточные линии, объединяющие комплексы автоматически работающих агрегатных станков и станков-автоматов. В связи с этим подобные средства можно использовать только там, где производство носит массовый, устойчивый характер. В целях разрешения противоречий, обусловленных, с одной стороны, мелкосерийностью объектов производства, а с другой, крупными масштабами самого производства, были разработаны методы групповой технологии. Следующим шагом на пути автоматизации производства является разработка программируемых и за счет этого перенастраиваемых средств, то есть гибкого оборудования. ГАП включает исполнительную систему, состоящую из технологической, транспортной, складской систем и систему управления.Производственным процессом в машиностроении называют совокупность действий, необходимых для выпуска готовых изделий. В основу производственного процесса положен технологический процесс изготовления изделий, во время которого происходит изменение качественного состояния объекта производства. Различные этапы производственного процесса на машиностроительном заводе могут выполняться в отделочных цехах или в одном цехе. В соответствии с ГОСТ 26229 гибкая производственная система (ГПС) (гибкое автоматизированное производство - ГАП) - совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение заданного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик. Сложнее всего происходит внедрение ГАП в сборочные производство, это связано: - со сложностью и разнообразием объектов сборки и необходимой для этой сборки оснастки;Изучение современного производства, разработок и проектов показывает, что спектр решений гибких производственных систем простирается от производственных модулей на базе одного станка с ЧПУ до объединенных компьютером производственных участков и цехов. Единица технологического оборудования для производства изделий произвольной номенклатуры в установленных пределах значений их характеристик с программным управлением, автономно функционирующая, автоматически осуществляющая все функции, связанные с их изготовлением, имеющая возможность встраивания в гибкую производственную систему. Совокупность в разных сочетаниях оборудования с ЧПУ, роботизированных технологических комплексов, гибких производственных модулей, отдельных единиц технологического оборудования и систем обеспечения их функционирования в автоматическом режиме в течение указанного интервала времени, обладающая свойством автоматизированной переналадки при производстве изделий произвольной номенклатуры в установленных пределах значений их характеристик. Гибкая производственная система, представляющая собой в различных сочетаниях совокупность гибких автоматизированных линий, роботизированных технологических комплексов, гибких автоматизированных участков, роботизированных технологических участков для изготовления изделий заданной номенклатуры. Совокупность в общем случае взаимосвязанных автоматизированных систем, обеспечивающих проектирование изделий, технологическую подготовку их производства, управление гибкой производственной системой при помощи ЭВМ и автоматическое перемещение предметов производства и технологической оснастки.Определяются, во-первых, характеристиками основного (станки) и вспомогательного (накопители, системы автоматизированного контроля и измерений и т.д.) оборудования и во-вторых, удачностью компоновки оборудования в ГПС.Наиболее надежным и удобным количественным критерием производительности являлась производительность, измеряемая количеством изделий, произведенных в единицу времени (шт/ч), или ее обратная величина - трудоемкость изготовления конкретного изделия.Гибкость: o возможность обрабатывать на одной и той же технологической линии различные детали в различных сочетаниях; Гибкость и производительность - это такие два фактора, которые очень трудно объединять, и поэтому только из анализа этих факторов можно определить их оптимальное соотношение для объединения, и этот анализ должен выполняться совместно конструктором и потребителем. Этот анализ должен способствовать определению того, как и насколько гибкая система производства может влиять и сокращать себестоимость продукции, где под себестоимостью продукции понимается как прямая стоимость производства, так и все косвенные затраты производства, которые могут быть изменены благодаря применению этой новой современной системы производства. Гибкие производственные системы обычно состоят из определенного количества станков, системы транспортировки и разгрузки деталей и системы управления, состоящей из одной или нескольких ЭВМ и соответствующего математического обеспечения.а) на уровне модуля обработки (станка): - спос
План
Содержание
Введение 3
1.1 Основные понятия и определения 5
1.2 Классификация производственных систем 6
2.1. Основные характеристики гибкого автоматизированного производства 9
2.1.1. Производительность ГПС 9
2.1.2. Понятие о гибкости автоматизированного производства 9
2.1.2.1. Характерные элементы гибкости 10
2.1.2.2. Виды гибкости 11
2.1.3. Эффективность работы ГПС 11
3. Станочная система ГПС 13
3.1. Классификация и основные определения 13
3.2. Оборудование, применяемое в ГПС 13
3.2.1. Оборудование для изготовления заготовок 13
3.2.2. Станки токарной группы 16
3.2.3. Станки для обработки корпусных и плоскостных деталей 17
Список использованной литературы 19
Введение
В нашей стране широкое распространение получили автоматические поточные линии, объединяющие комплексы автоматически работающих агрегатных станков и станков-автоматов.
Недостаток - узкая ориентация на изготовление определенного вида изделий. В связи с этим подобные средства можно использовать только там, где производство носит массовый, устойчивый характер.
В промышленно развитых странах крупносерийное и массовое производство составляет лишь 20%, а единичное, мелкосерийное и серийное производство - 80 %.
В целях разрешения противоречий, обусловленных, с одной стороны, мелкосерийностью объектов производства, а с другой, крупными масштабами самого производства, были разработаны методы групповой технологии.
Следующим шагом на пути автоматизации производства является разработка программируемых и за счет этого перенастраиваемых средств, то есть гибкого оборудования. К ним относятся станки с ЧПУ, в том числе обрабатывающие центры, промышленные роботы и другое оборудование. Еще большей гибкостью обладают системы, управляемые от ЭВМ. Подобные системы называют по разному: В Японии - гибкой автоматизацией, гибким производственным комплексом.
В США - гибкой производственной системой (FMS). (ГПС).
В нашей стране такого рода комплексы называют гибким автоматическим производством (ГАП).
ГАП функционирует на основе программного управления и групповой ориентации производства. На первом этапе ГАП может быть автоматизированным, то есть включать операции, выполняемые с участием человека.
ГАП включает исполнительную систему, состоящую из технологической, транспортной, складской систем и систему управления.
Анализ ГПС позволяет сделать некоторые выводы: управление транспортными системами и работой станков осуществляется одной или несколькими отдельными ЭВМ;
число станков в ГПС колеблется от 2 до 50. Однако 80% ГПС составлено из 4-5 станков и 15% из 8 - 10;
реже встречаются системы из 30-50 станков (2-3%);
наибольший экономический эффект от использования ГПС достигается при обработке корпусных деталей, нежели от их использования при обработке других деталей, например деталей типа тел вращения. Например в Германии их 60%, в Японии - более 70, в США - около 90%;
различна и степень гибкости ГПС. Например в США преобладают системы для обработки изделий в пределах 4-10 наименований, в Германии - от 50 до 200;
нормативный срок окупаемости ГПС в различных странах 2 - 4,5 года.
Проблемы, возникшие при применении гибких систем
ГПС не достигла поставленных целей по рентабельности; она оказалась слишком дорогостоящей по сравнению с преимуществами, достигнутыми с ней. Обнаружено, что причиной высокой стоимости оборудования были несоразмерные расходы на приспособления и транспортную систему;
разработка и введение в эксплуатацию комплексной ГПС оказалось трудным, а также дорогостоящим;
изза недостатка опыта было трудно выбирать подходящие типы систем и оборудование для нее;
имеется мало поставщиков систем, которые могут поставлять сложные системы. в некоторых случаях эксплуатационники получили опыт о фактически слабой гибкости;
конструктивные элементы ГАПС, например, станки, системы управления и периферийные устройства часто оказывались неподходящими к системе и вызывали лишние проблемы по стыковке.
Эксплуатационники часто не имеют достаточной готовности к эксплуатации сложной системы;
Длительный срок выполнения проекта от конструирования до запуска системы.
Перспективы применения гибких систем одновременное повышение эффективности и гибкости;
повышение степени автоматизации не уменьшая гибкости;
усовершенствование таких измерительно-контрольных методов, которые контролируют в процессе обработки состояние инструмента и обрабатываемых деталей, необходимое для соответствующей автоматической подналадки;
уменьшение количества приспособлений и палет за счет автоматизации крепления деталей;
введение в ГПС таких операций, как промывка, покрытие, термообработка, сборка и т.д.;
развитие профилактического техобслуживания.
Значение ГПС более высокий коэффициент использования станков (в 2-4 раза больше по сравнению с применением отдельных станков);
более короткое время прохода производства;
уменьшается доля незаконченного производства, т.е. уменьшается количество запасов деталей на складах, которое означает уменьшение продукции, привязанного к производству;
более ясный поток материала, меньше перетранспортировок и меньше точек управления производством;
уменьшаются расходы на заработную плату;
более ровное качество продукции;
более удобная и благоприятная обстановка и условия работы для работающих.