Формирование понятия свойств арифметических действий у младших школьников - Курсовая работа

бесплатно 0
4.5 139
Арифметические действия в начальном курсе математики и методика их изучения. Особенности формирования понятия свойств арифметических действий у младших школьников. Приемы работы, виды деятельности детей для усвоения свойств арифметических действий.


Аннотация к работе
Ознакомление учащихся с арифметическими действиями подготавливается на первых уроках математики практическими упражнениям в объединении двух множеств предметов, в установлении соответствия между элементами двух множеств, в выделении части данного множества предметов. Исходя из важности изучения свойств арифметических действий, изза отсутствия единого подхода к изучению данной проблеме в различных системах обучения возникает необходимость рассмотрения, выяснения и уточнения особенностей формирования понятия свойств арифметических действий. В этом заключается актуальность, так как, во-первых, изучение и применение свойств арифметических действий является одним из важных тем, во-вторых, многие учителя не акцентируют внимание на использование свойств этих действий. Учитывая актуальность мы определили тему курсовой работы "Формирование понятия свойств арифметических действий у младших школьников". Гипотезой исследования выдвигается, положение о том, что раскрытие конкретного смысла свойств арифметических действий учителями поможет грамотному формированию понятия свойств арифметических действий: лучше усвоить ее, применять свойства и действия при решении задач и примеров;Магницкий, определив арифметику или числительницу, как "художество честное, независимое и всем удобопонятное, многополезнейшее и многопохвальнейшее", рассматривает в своей книге пять "определений" или арифметических действий: "нумерацию или счисление, аддицию или сложению, субтракцию или вычитание, мультипликацию еже есть умножение и дивизио еже есть деление". В латинских учебниках, которыми в течение нескольких веков пользовались школы всех народов, эти действия назывались виды (действия) (от лат. species). Индийские математики рассматривали шесть арифметических действий: сложение, вычитание, умножение, деление, возведение в степень и извлечение корней. Сакробоско (XIII в) имеет их девять, как и многие авторы последующих веков: нумерация, сложение, вычитание, удвоение, умножение (деление пополам), деление, прогрессия, извлечение корней. Наши четыре действия над числами египтяне выполняли сложением, удвоением и делением пополам.Более тысячи лет развивалась и утверждалась идея выполнения арифметических действий сложения, вычитания, умножения и деления. Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения. Сложение и умножение чисел обладают свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения.Так, на примере чисел первого десятка выясняется, как образуется каждое следующее число в натуральном ряду, устанавливается соотношение между любым числом ряда и всеми предшествующими или последующими числами, учащиеся знакомятся с различными способами сравнения чисел (сначала на основе сравнения соответствующих групп предметов, а затем по месту, которое занимают сравниваемые числа в ряду). Так, в теме "Числа от 1 до 10" дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых в тех случаях, когда его применение облегчает вычисления (например, в случаях вида 2 7, 1 6 и т.п.). Перед изучением внетабличного умножения и деления дети знакомятся с разными способами умножения или деления суммы на число (в случае, когда каждое слагаемое делится на это число). Так, в теме "Числа от 1 до 10" дети знакомятся с переместительным свойством сложения, учатся пользоваться приемом перестановки слагаемых в тех случаях, когда его применение облегчает вычисления (например, в случаях вида 2 7, 1 6 и т.п.). Перед изучением внетабличного умножения и деления дети знакомятся с разными способами умножения или деления суммы на число (в случае, когда каждое слагаемое делится на это число).Основу начального курса математики составляют представления о натуральном числе и нуле, о четырех арифметических действиях с целыми неотрицательными числами и важнейших их свойствах, а также основанное на этих знаниях осознанное и прочное усвоение приемов устных и письменных вычислений. Важнейшее значение придается постоянному использованию сопоставления, сравнения, противопоставления связанных между собой понятий, действий и задач, выяснению сходства и различия в рассматриваемых фактах. С этой целью материал сгруппирован так, что изучение связанных между собой понятий, действий, задач сближено во времени.На их знание и их свойств фактически основывается вся остальная математика, основные ее понятия и программный материал. Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассм

Введение
Изучение свойств алгебраических операций привело математиков к выводу о том, что основная задача алгебры - изучение свойств операций рассматриваемых не зависимо от объектов, к которым они применяются. И если первоначально алгебра была учением уравнений, то XX веке она превратилась в науку об операциях и их свойствах.

Ознакомление учащихся с арифметическими действиями подготавливается на первых уроках математики практическими упражнениям в объединении двух множеств предметов, в установлении соответствия между элементами двух множеств, в выделении части данного множества предметов.

Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач.

Если по двум данным числам определяют третье число, удовлетворяющее некоторым условиям, то этот процесс в математике называют действием.

Все существующие ныне альтернативные системы обучения опираются на теоретико-множественный подход при формировании свойств арифметических действий.

Для объяснения обычно используют множества предметов не ссылаясь на задачи. Не каждый учитель ясно представляет, что изучение арифметических действий и их свойств в процессе работы с задачей усваиваются лучше. Исходя из важности изучения свойств арифметических действий, изза отсутствия единого подхода к изучению данной проблеме в различных системах обучения возникает необходимость рассмотрения, выяснения и уточнения особенностей формирования понятия свойств арифметических действий. В этом заключается актуальность, так как, во-первых, изучение и применение свойств арифметических действий является одним из важных тем, во-вторых, многие учителя не акцентируют внимание на использование свойств этих действий.

Учитывая актуальность мы определили тему курсовой работы "Формирование понятия свойств арифметических действий у младших школьников".

Проблема исследования: какими приемами работы, видами деятельности детей можно добиться усвоения свойств арифметических действий.

Цель исследования: выявление особенностей формирования понятия свойств арифметических действий у младших школьников.

Объект исследования: процесс изучения математики в начальных классах.

Предмет исследования: формирование понятия свойств арифметических действий у младших школьников.

Гипотезой исследования выдвигается, положение о том, что раскрытие конкретного смысла свойств арифметических действий учителями поможет грамотному формированию понятия свойств арифметических действий: лучше усвоить ее, применять свойства и действия при решении задач и примеров;

в доступной форме для младших школьников познакомить их с теми свойствами рассматриваемых действий, которые являются теоретической основой изучаемых приемов устных и письменных вычислений;

формировать у детей сознательные и прочные навыки быстрых и правильных вычислений.

Для достижения цели в ходе исследования поставлены следующие задачи исследования: Изучить и систематизировать психолого-педагогическую, методическую и специальную литературу по проблеме исследования.

Выявить роль задач в усвоении свойств арифметических действий младшими школьниками.

Ознакомиться с опытом работы учителей начальных классов по формированию свойств арифметических действий у младших школьников.

Провести исследовательскую и экспериментальную работу по проблеме исследования.

Методологической основой исследования являются положения отечественной педагогики сформулированной в трудах В.В. Давыдова, Н.Б. Истоминой, М.А. Бантовой, М.И. Моро, Н.Ф. Виноградова и др.

В ходе исследования использовались следующие методы исследования: анализ психолого-педагогической, исторической, методической и учебной литературы;

изучение опыта работы учителей начальных классов.

Этапы реализации исследовательской работы: этап (сентябрь - декабрь 2009г) - выбор темы исследования, определение научного аппарата исследования, изучение литературы по раскрытию конкретного смысла свойств арифметических действий. этап (январь - март 2010 г) - определение базы исследования, проведение опытно-экспериментальной работы, оформление теоретической части.

ІІІЭТАП (апрель - май 2010 г) - анализ и обобщение результатов исследования, составление рекомендаций и оформление дипломной работы.

Научная новизна исследования заключается в выявлении особенностей раскрытия конкретного смысла свойств арифметических действий и использование их в процессе изучения математики.

Теоретическая значимость: изучен и систематизирован теоретический и методический материал по данной проблеме, определено содержание учебного материала в программах начальных классов.

Практическая значимость исследования: 1) приведены в систему накопленный опыт работы учителей начальных классов;

выделены виды задач, используемые для раскрытия конкретного смысла арифметических действий, выявлены приемы и методы применения свойств арифметических действий, используемые для рационального решения примеров;

эти приемы апробированы в процессе экспериментальной работы и доказана возможность использования их учителями начальных классов, студентами и преподавателями педагогического института.

Апробирование исследования осуществлялась в ходе экспериментальной работы.

Достоверность исследования определяется анализом теоретического, экспериментального материала, обработкой полученных результатов опытного исследования.

Структура исследования: данная курсовая работа состоит из введения, двух глав, выводов, заключения и списка использованной литературы.

Вывод
У каждого народа были свои арифметические действия. И все они использовались для выполнения операций над числами. Более тысячи лет развивалась и утверждалась идея выполнения арифметических действий сложения, вычитания, умножения и деления. Эти арифметические действия являются основными действиями в математике. Изучение истории развития являются интересными не только для учеников, но и для нас самих, а изучение помогает заинтересовать младших школьников.

Каждое из четырех арифметических действий должно прочно связаться в сознании детей с теми конкретными задачами, которые требуют его применения. Смысл действий и раскрывается главным образом на основе практических действий с множествами предметов и на системе соответствующих текстовых задач. На их основе доводится до сознания детей связь между компонентами и результатами действий, связь между действиями, рассматриваемые свойства действий и изучаемые математические отношения.

Сложение и умножение чисел обладают свойствами коммутативности, ассоциативности, умножение дистрибутивно относительно сложения.

Переместительное свойство умножения широко используется при составлении таблицы умножения однозначных чисел. Сочетательный закон в начальной школе в явном виде не рассматривается, но используется вместе с переместительным законом при умножении числа на произведение. Распределительный закон умножения относительно сложения рассматривается в школе на конкретных примерах и носит название правил умножения числа на сумму и суммы на число. Рассмотрение этих двух правил диктуется методическими соображениями.Основу начального курса математики составляют представления о натуральном числе и нуле, о четырех арифметических действиях с целыми неотрицательными числами и важнейших их свойствах, а также основанное на этих знаниях осознанное и прочное усвоение приемов устных и письменных вычислений.

Программа М.И. Моро предусматривает раскрытие взаимосвязи между компонентами и результатами действий. Важнейшее значение придается постоянному использованию сопоставления, сравнения, противопоставления связанных между собой понятий, действий и задач, выяснению сходства и различия в рассматриваемых фактах. С этой целью материал сгруппирован так, что изучение связанных между собой понятий, действий, задач сближено во времени.

В основе построения программы Н.Б. Истоминой лежит методическая концепция, выражающая необходимость целенаправленной и систематической работы по формированию у младших школьников приемов умственной деятельности: анализа и синтеза, сравнения, классификации, аналогии и обобщения - в процессе усвоения математического содержания.

Таким образом, изучение начального курса математики должно создать прочную основу для дальнейшего обучения этому предмету. Для этого важно вооружить учащихся предусмотренным программой кругом знаний, умений и навыков, также надо предлагать учащимся задания, интересные по форме предъявления, необычные по своей интеллектуальной красоте способы и методы решения математических задач, учить быстрым и рациональным приемам вычислений.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?