Стекло как широко применяемый материал в быту, строительстве и транспорте. Уникальные качества стекла: прозрачность, твердость, химическая устойчивость к активным химическим реагентам, относительная дешевизна производства. Типология и производство стекла.
Аннотация к работе
Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ Его физические и оптические свойства" по дисциплине «Искусственное освещение и звукоизоляция зданий»Человеку с древнейших времен известны природные стекла (янтарь, стекла вулканического происхождения), а вырабатывать стекла он научился несколько тысяч лет назад. В народном хозяйстве ориентировочно можно выделить следующие основные области применения стекла: строительная промышленность, производство стеклотары, стеклоаппаратов, химической посуды; электровакуумная промышленность, использование стекла в качестве декоративного материала, оптическая промышленность и приборостроение. Замечательные декоративные свойства стекла (способность воспринимать различные окраски, передавать игру света, разнообразие в переходах от кристальной прозрачности через все степени замутнения до полной непрозрачности) обусловили существование особой группы изделий, объединяемых общим названием "художественное стекло". Эти стекла используются при создании монументальных стенных панно в технике мозаичной живописи, родственной технике витража [2]. В виде стеклоэмалей, непрозрачных тонких стекловидных слоев различных цветов, стекло используется как защитное покрытие, предохраняющее металлические изделия от разрушения и придающее им внешний вид, удовлетворяющий эксплуатационным и эстетическим требованиям.Обычно понятие "стекло" определяется не просто как материал, а как некоторое особое состояние твердого тела, стеклообразное состояние, противопоставляемое кристаллическому. Рассмотрим вещества, находящиеся в указанных агрегатных состояниях, с точки зрения взаимного расположения частиц (атомов, ионов, молекул), образующих вещество, и их взаимодействия между собой. При понижении температуры газ конденсируется в жидкость, которая при дальнейшем снижении температуры кристаллизуется. В жидкостях и кристаллах частицы располагаются несравненно более компактно, между ними действуют значительные по величине силы, которые создают известную упорядоченность в расположении атомов или молекул: в кристаллах почти идеальную, в жидкостях - существенно менее полную. Элементарная ячейка состоит из некоторого числа атомов (ионов, молекул), строго определенным образом расположенных друг относительно друга.Приведенное выше определение стекла, связанное с традиционным способом его производства и с общими сведениями о его структуре, привело к двум различным направлениям в развитии теории стеклообразного состояния. Лебедев предположил, что структуру стекла образуют субмикроскопические кристаллы - кристаллиты, расположенные друг относительно друг друга хаотическим образом [6]. Как показали многочисленные рентгеновские и нейтронографические (основанные на изучении рассеяния нейтронов стеклом) исследования, наличие неупорядоченной сетки подтверждается применительно к структуре однокомпонентных стекол, таких, как B2O3 , SIO2 , As2O3 , Si, B, и некоторых других. Исследования поведения стеклянных электродов в растворах электролитов также позволили высказать определенные суждения о ближнем порядке в стеклах. На базе экспериментального материала по изучению поведения электродов из разных стекол в растворах электролитов и его теоретического осмысления автором был предложен метод изучения элементов структуры стекла по типу комплексных ионов, таких, например, как [ALO4/2]1 -, [BO4/2]1 - [7].Таким образом, в стеклообразном состоянии могут находиться вещества самого разного химического типа, с самыми разными видами химических связей - ковалентных, ионных, металлических - и разнообразными физико-химическими свойствами. Однако при достаточно высоких скоростях охлаждения кристаллизация часто начинается только при существенно более низких температурах, и жидкое состояние еще сохраняется в той области температур, где стабильным является кристаллическое состояние. При повышении степени переохлаждения жидкость становится все менее термодинамически устойчивой и кристаллизация становится все более энергетически выгодной. В этой связи представляется необходимым понять, каким же образом все-таки получается стекло. Итак, два основных фактора влияют на склонность переохлажденной жидкости к кристаллизации при снижении температуры: степень переохлаждения жидкости увеличивает эту склонность, а увеличение вязкости - уменьшает.Несмотря на то что стекло известно с древнейших времен и находит широкое применение практически во всех областях человеческой деятельности, природа стеклообразного состояния, понимание процессов стеклования на атомно-молекулярном уровне далеки от создания теории стеклообразного состояния, аналогичной по своей общности теории кристаллического состояния.