Энтропия и ее связь с тепловой энергией - Реферат

бесплатно 0
4.5 72
Теплота и энтропия. Сложность понимания физического смысла энтропии. Энтропия Вселенной, теория тепловой смерти. Сфера применения законов термодинамики. Энтропия как функция состояния термодинамической системы для описания эволюции реальных систем.


Аннотация к работе
Энтропия принадлежит к числу важнейших понятий физики. Энтропия как физическая величина была введена в термодинамику Р. Понятие энтропии с самого начала оказалось трудным для восприятия в отличие, например, от другой физической величины - температуры. Она носит чисто психологический характер и связана с невозможностью непосредственного восприятия энтропии, отсутствием «градусника», который бы измерял энтропию, как измеряют температуру. Термодинамика в силу феноменологического характера не может вскрыть физический смысл, как энтропии, так и температуры.Энтропия вводится вторым началом термодинамики. Подчеркнем, что выбор отдельных обратимых процессов в уравнении 1 или пути интегрирования в уравнении 2 могут не иметь ничего общего с тем, каким образом в действительности система переходит из состояния В в состояние А. Поскольку энтропия является функцией состояния, то есть величиной, которая не зависит от того, каким путем было достигнуто это состояние, то выбор пути обратимого процесса не имеет значения. В соответствии со вторым началом энтропия в таком процессе должна возрастать. Из факта возвращения энтропии к своему первоначальному значению после произвольного обратимого кругового процесса следует вывод, что энтропия в данном состоянии не зависит от способа достижения этого состояния, а определяется параметрами этого состояния, то есть является функцией состояния, как утверждает второе начало.Из этой формулировки следует, что в конце эволюционного процесса Вселенная должна прийти в состояние термодинамического равновесия (в состояние тепловой смерти), которому соответствует полная дезорганизация системы. Представление о тепловой смерти Вселенной, вытекающее из формулировки второго начала, предложенной Клаузиусом, - пример неправомерного перенесения законов термодинамики в область, где она уже не работает. Если равновесную систему разбить на отдельные равновесные макроскопические части, то энергия всей системы будет суммой энергий отдельных ее частей. Этим признаком Вселенная не обладает. Таким образом, говорить об энтропии Вселенной в термодинамическом смысле нельзя, поскольку Вселенная не является термодинамической системой.Среди всех физических величин, вошедших в науку в XIX в., энтропия занимает особое место в силу своей необыкновенной судьбы. С самого начала энтропия утвердилась в теории тепловых машин. В отличие, например, от других термодинамических величин энтропия довольно быстро перешагнула границы физики. Трактовка энтропии с помощью принципа Больцмана, то есть установление связи между энтропией и вероятностью состояния системы или ее статистическим весом, позволила энтропии выйти за пределы термодинамики и равновесной статистической физики и проникнуть в другие области науки, например в теорию информации.

План
Содержание

Введение

1.Теплота и энтропия

2.Энтропия Вселенной, теория тепловой смерти

Заключение

Список использованной литературы

Введение
Энтропия принадлежит к числу важнейших понятий физики. Энтропия как физическая величина была введена в термодинамику Р. Клаузиусом в 1865 г. и оказалась настолько важной и общезначимой, что быстро завоевала сначала другие области физики, а затем проникла и в смежные науки: химию, биологию, теорию информации и т.д.

Понятие энтропии с самого начала оказалось трудным для восприятия в отличие, например, от другой физической величины - температуры. Эта трудность сохранилась и для тех, кто впервые знакомится с термодинамикой. Она носит чисто психологический характер и связана с невозможностью непосредственного восприятия энтропии, отсутствием «градусника», который бы измерял энтропию, как измеряют температуру.

Вместе с тем более глубокое понимание температуры, завершившееся формулировкой «нулевого начала», показывает, что понятие температуры и энтропии одинаковы по сложности. Понятие температуры вводится «нулевым началом», понятие энтропии - вторым началом. Термодинамика в силу феноменологического характера не может вскрыть физический смысл, как энтропии, так и температуры. Эту задачу решает статистическая физика. Статистическая интерпретация энтропии позволила математикам обобщить понятие энтропии и ввести метрическую энтропию как абстрактную величину, характеризующую поведение неустойчивых динамических систем с экспоненциальной расходимостью близких в начальный момент времени траекторий (энтропия Крылова-Колмогорова-Синая). Метрическая энтропия - абстрактное математическое понятие, слишком далеко находящееся от практических задач.

Актуальность данной темы определяется значительной ролью понятия энтропии не только для физики, но и для биологии, синергетики, современных концепций теории информации.

Целью настоящей работы является исследование физического смысла понятия энтропии и его применения для описания реальных явлений.

В связи с поставленной целью можно формулировать следующие задачи исследования: · дать определение термина «энтропия» и рассмотреть его связь с тепловой энергией;

· рассмотреть применимость энтропии как функции состояния термодинамической системы для описания и прогноза эволюции реальных систем.

Реферат состоит из 5 разделов. В первом сформулированы цель и задачи исследования, во втором раскрывается физический смысл энтропии, в третьем дается обзор теории тепловой смерти вселенной, в четвертом сделаны основные выводы по содержанию работы, в пятом указаны первоисточники по теме работы.

Вывод
Среди всех физических величин, вошедших в науку в XIX в., энтропия занимает особое место в силу своей необыкновенной судьбы. С самого начала энтропия утвердилась в теории тепловых машин. Однако очень скоро рамки этой теории оказались ей тесны, и она проникла в другие области физики, прежде всего в теорию излучения. Экспансия энтропии этим не ограничилась. В отличие, например, от других термодинамических величин энтропия довольно быстро перешагнула границы физики.

Энтропия является фундаментальной физической величиной. С введением энтропии завершился этап формирования основных понятий термодинамики. Следующий этап начался с выяснения физического смысла энтропии. Трактовка энтропии с помощью принципа Больцмана, то есть установление связи между энтропией и вероятностью состояния системы или ее статистическим весом, позволила энтропии выйти за пределы термодинамики и равновесной статистической физики и проникнуть в другие области науки, например в теорию информации.

Научный потенциал энтропии далеко не исчерпан уже существующими приложениями. В перспективе проникновение энтропии в новую область науки - синергетику, которая занимается изучением закономерностей образования и распада пространственно-временных структур в системах различной природы: физических, химических, биологических, экономических, социальных и т.д. Триумфальное шествие энтропии продолжается.

Список литературы
1. Зоммерфельд А. Термодинамика и статистическая физика. М.: Изд-во Иностр. лит., 1955.

2. Киржниц Д.А. Горячие «черные дыры»: Новое в понимании природы теплоты // Соросовский Образовательный Журнал. 1997. № 6. С. 84.

3. Осипов А.И. Термодинамика вчера, сегодня и завтра // Соросовский Образовательный Журнал. 1999. № 4. С. 79.

4. Осипов А.И., Уваров А.В. Энтропия и ее роль в науке // Соросовский Образовательный Журнал. 2004. № 1. С. 70-78.

5. Ребане К.К. Энергия, энтропия, среда обитания. Таллин: Валгус, 1984.

6. Смородинский Я.А. Температура. М.: Наука, 1981 (Б-ка «Квант»; Вып. 12).

7. Шамбадаль П. Развитие и приложения понятия энтропии. М.: Наука, 1967.
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?