Економіко-математичне моделювання в управлінні підприємством аграрно-промислового комплексу - Курсовая работа

бесплатно 0
4.5 174
Особливості побудови математичної моделі економічного явища. Множинна лінійна регресія в стандартизованому масштабі. Множинна нелінійна регресія, комп’ютерна реалізація методу Брандона. Моделювання для підприємств аграрно-промислового комплексу.


Аннотация к работе
Як основна причина швидкого розповсюдження економіко-математичних методів і моделей перш за все необхідно назвати різке ускладнення сучасної економічної практики, викликане високим рівнем розвитку продуктивних сил, глибокою спеціалізацією виробництва, збільшенням темпів науково-технічного прогресу. Всі ці чинники, доповнені вимогою підвищення ефективності використання природних ресурсів, кількість яких далеко не безмежно, а також необхідність усвідомлення близьких і віддалених екологічних наслідків господарської діяльності людства, приводять до зростання вимог, що предявляються до якості рішень, що приймаються в народному господарстві. Тому розрахункова робота близька зрозуміла економістам і господарникам, так що поява електронної обчислювальної техніки, яка на перший погляд мало відрізнилася від звичайних арифмометрів (хіба що була більш швидкодіючою) само по собі не могло змінити методів ухвалення господарських рішень: просто традиційні розрахунки, що займали раніше багато годин і днів, стали здійснюватися за секунди. Результати цих розрахунків, представлені господарникові, відповідальному за ухвалення рішення (як прийнято говорити, особі, що ухвалює рішення (ОУР)), дали йому можливість вибрати з розглянутих варіантів рішення найбільш відповідний. В процесі вибору рішення за допомогою обчислювальної техніки на основі оцінки його декількох варіантів і у господарника, і у дослідника виникають наступні питання.Надалі ми обмежимось тим розумінням слова "модель", яке використовується в широко поширеному методі дослідження, званому моделюванням. Моделювання - це вивчення обєктів дослідження не безпосередньо, а непрямим шляхом, за допомогою аналізу деяких допоміжних обєктів, які прийнято називати моделями. Класифікацію методів моделювання і моделей можна проводити по різних ознаках: по сфері додатку, по характеру модельованих обєктів, по ступеню подробиці моделей і т.д. Матеріальним моделювання називається у тому випадку, коли дослідження ведеться на моделях, звязок яких з досліджуваними обєктами існує обєктивно, має матеріальний характер. Моделі, використовувані у фізичному моделюванні, призначені для відтворення динаміки процесів, що відбуваються в науковому обєкті, причому спільність процесів, що відбуваються в обєкті дослідження і моделі, ґрунтується на схожості їх фізичної природи.Цей етап включає виокремлення найважливіших рис і властивостей обєкта, що моделюється, і абстрагування від другорядних; вивчення структури обєкта і головних залежностей, що поєднують його елементи; формулювання гіпотез, що пояснюють поведінку і розвиток обєкта. Тому, навіть зустрічаючись з новою економічною задачею спочатку необхідно спробувати застосувати для розвязання цієї задачі вже відомі моделі (адаптувати їх до задачі). У процесі побудови моделі здійснюється зіставлення двох систем наукових знань - економічних і математичних. Треба прагнути до того, щоб одержати модель, яка належить до добре вивченого класу математичних задач (напр. шляхом деякого спрощення вихідних положень моделі), Однак можлива й така ситуація, коли формалізація економічної проблеми приводить до невідомої раніше математичної структури. Аналітичне дослідження моделі порівняно з емпіричним (числовим) має ту перевагу, що одержувані висновки зберігають свою силу за різноманітних конкретних значень зовнішніх і внутрішніх параметрів моделі.Модель має адекватно описувати реальні технологічні та економічні процеси. У моделі потрібно враховувати все істотне, суттєве в досліджуваному явищі чи процесі, нехтуючи всім другорядним, неістотним у ньому. Справді, прості моделі не забезпечують відповідної точності, і "оптимальні" розвязки за такими моделями, як правило, не відповідають реальним ситуаціям, дезорієнтують користувача, а переускладнені моделі важко реалізувати на ЕОМ як з огляду на неможливість їх інформаційного забезпечення, так і через відсутність відповідних методів оптимізації.Розглянемо два методи оцінки параметрів множинної лінійної регресії в стандартизованому масштабі. У стандартизованому масштабі спрощується лінійне стохастичне співвідношення між показником і факторами. Регресія не має вільного члена і в стандартизованому масштабі набуває вигляду. Якщо для оцінки параметрів стандартизованої лінійної регресії використати МНК, то система нормальних рівнянь набуде вигляду. Якщо відома оцінка параметра регресії , то для отримання стандартизованої оцінки параметра фактора необхідно помножити цей параметр на середньоквадратичне відхилення цього фактора і поділити на середньоквадратичне відхилення показника.Лише деякі природні та економічні процеси можна моделювати за допомогою лінійної моделі. її вибір залежить від процесу і тривалості спостереження за ним. Деякі процеси при нетривалому спостереженні за ними можна з певним наближенням моделювати за допомогою лінійної багатофакторної моделі. Як і для парного регресійного аналізу, для багатофакторного регресійного аналізу можна розглядати два типи моделей: лінійні відносно оцінюваних пара

План
Зміст

Вступ

1. Економіко-математичне моделювання

1.1 Основні типи моделювання

1.2 Етапи побудови економіко-математичних моделей

1.3 Особливості побудови математичної моделі економічного явища чи процесу

1.4 Методи економіко-математичного моделювання

1.4.1 Множинна лінійна регресія. Множинна лінійна регресія в стандартизованому масштабі

1.4.2 Множинна нелінійна регресія

1.4.3 Метод Брандона

1.5 Важливість моделювання для підприємств аграрно-промислового комплексу

1.6 Постановка завдання

2 Аналіз собівартості для планування урожайності сільскогосподарської продукції

2.1 Аналіз собівартості сільськогосподарської продукції

3. Економіко-математичне моделювання в управлінні підприємством

3.1 Економіко-математичне моделювання урожайності сільськогосподарської продукції методом Брандона.

3.2 Компютерна реалізація методу Брандона

3.3 Функціональні можливості програми прогнозування урожайності

Висновок

Перелік використаної літератури
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?