Двухроторный массообменный аппарат - Курсовая работа

бесплатно 0
4.5 66
Свойства нитрозных газов, способы их очистки. Повышение эффективности массообменных процессов в системах газ-жидкость. Патентный поиск и его результаты. Описание наиболее оригинальных конструкций. Расчет долговечности подшипников и зубчатой передачи.


Аннотация к работе
27.09.2005 Центробежно-барботажный аппарат, содержащий верхнюю крышку, камеру с верхней и нижней торцевыми крышками, внутренней обечайкой в виде обратного перфорированного отверстиями конуса, размещенной в камере, подводящей трубой для жидкости, ориентированной внутрь обечайки, снабженной тарелкой для подачи и слива жидкости, размещенной в нижней торцевой крышке камеры с возможностью образования зазора с ее внутренней поверхностью, тангенциальный патрубок ввода газа, патрубок вывода газа, отличающийся тем, что в камере дополнительно размещена перегородка в виде пластины, расположенной между цилиндрическим корпусом камеры и обечайкой, выполненной в форме улитки от места сопряжения тангенциального патрубка ввода газа с цилиндрическим корпусом камеры, соединяющей верхнюю и нижнюю торцевые крышки, кроме того, верхняя и нижняя торцевые крышки выполнены с отверстиями. Тепло-и массообменный аппарат, содержащий корпус, состоящий из цилиндрической части и двух фланцев, в верхней части которого установлены патрубки для подвода и отвода газа, а в нижней - патрубки для подвода и отвода жидкости, снабженный набором закрепленных в нем разделительных кольцевых перегородок, образующих секции, в каждой из которых на вращающемся валу установлен поперечный сплошной диск, к каждому из которых по бокам прикреплены пакеты кольцевых контактных дисков, установленные с зазором относительно корпуса, вала, друг друга и разделительных кольцевых перегородок и частично погруженные в жидкость, формирующие зигзагообразное радиально-осевое, последовательно-параллельное течение потока газа, отличающийся тем, что между крайними разделительными кольцевыми перегородками набора, внутри цилиндрической части корпуса установлены цилиндрические вставки, между которыми размещены остальные разделительные кольцевые перегородки набора, образующие совместно секции, причем цилиндрические вставки и кольцевые перегородки скреплены между собой и, как минимум, одна крайняя разделительная кольцевая перегородка набора скреплена с корпусом. Массообменная установка, имеющая две ступени последовательно соединенных массообменных аппаратов, первая ступень включает аппарат центробежно-вихревого типа, содержащий цилиндрический корпус, имеющий в нижней части отверстия или тангенциальные патрубки, с верхней и нижней торцевыми крышками, имеющими центральные отверстия, подводящие и отводящие патрубки жидкой и газообразной сред, из которых подводящие патрубки жидкой среды подсоединены тангенциально корпусу первой ступени, вторая ступень включает аппарат, представляющий собой емкость свободного слива или накопительную, в которой размещено устройство для диспергирования жидкости, к которому присоединен патрубок отвода жидкой среды от аппарата первой ступени, отличающаяся тем, что патрубок подвода газообразной среды присоединен к емкости второй ступени и эта емкость соединена трубой или газоходом с патрубком подвода газообразной среды аппарата центробежно-вихревого типа первой ступени, при этом нижняя часть корпуса центробежно-вихревого аппарата первой ступени охвачена обечайкой большего диаметра с верхней и нижней крышками. Тепло-и массообменный аппарат, содержащий цилиндрический корпус с днищем и, как минимум, одним съемным фланцем, в которых установлены патрубки для подвода и отвода газа и патрубки для подвода и отвода жидкости, вращающийся вал с установленными на нем соосно корпусу последовательно чередующимися разделительными кольцевыми перегородками, образующими секции, и поперечными сплошными дисками, между которыми установлены контактные пакеты, состоящие из кольцевых контактных дисков, которые установлены с зазором относительно корпуса, вала и друг друга, при этом разделительные кольцевые перегородки и поперечные сплошные диски жестко скреплены между собой продольными шпильками, закрепленными в крайних разделительных кольцевых перегородках, отличающийся тем, что вокруг разделительных кольцевых перегородок установлена с зазором относительно цилиндрического корпуса аппарата обечайка, которая жестко соединена, как минимум, с крайними разделительными кольцевыми перегородками, и которая совместно с валом, разделительными кольцевыми перегородками, поперечными сплошными дисками, контактными пакетами и продольными шпильками образует технологический корпус, вал выполнен из двух полуосей, при этом в полуоси со стороны выхода газа выполнено отверстие так, что один конец полости отверстия соединен с первой секцией со стороны этой полуоси, а второй - с патрубком отвода газа, установленным на фланце аппарата, при этом внутри полуоси с отверстием коаксиально установлен патрубок подвода жидкости, в крайней разделительной кольцевой перегородке со стороны отвода жидкости выполнены отверстия, при этом тепло-и массообменный аппарат установлен с наклоном от 2 до 10° в сторону патрубка отвода жидкости. 22.11.В данном курсовом проекте была разработана схема двухроторного массообменного аппарата. Были изучены свойства нитрозных газов, проведен анализ существующих методов очистки воздуха от

Введение
Данная работа посвящена разработке и усовершенствованию конструкции двухроторного абсорбера, используемого для очистки воздуха от нитрозных газов. В первой главе курсового проекта изучены свойства нитрозных газов, существующие методы очистки, а также способы повышения интенсификации процесса абсорбции. Далее проведен патентный поиск и выявлены преимущества и недостатки конкурентного оборудования. Далее предлагается схема улавливания нитрозных газов и конструкция аппарата. Вторая глава посвящена экспериментальной части, а именно изучению структуры газожидкостной системы и определение площади межфазного контакта в двухроторном аппарате с помощью фотооптического метода. Затем были проведены механические расчеты основных элементов конструкций аппарата и сделаны общие выводы о проделанной работе.

В последнее время все большее значение приобретают проблемы защиты окружающей среды в связи с увеличением негативного антропогенного воздействия на нее человека. Ухудшение экологической обстановки приводит к техногенным катаклизмам различных масштабов - развитию заболеваний организмов, ухудшению качества товаров и продуктов, сокращению срока службы строений, машин, приборов вследствие коррозии и др.

Металлургическая промышленность вносит значительный вклад в регресс экоразвития нашей страны. Наиболее серьезной экологической проблемой отрасли являются выбросы отходящих газов, содержащие токсичные вещества, в том числе и оксиды азота.

Предельно-допустимое среднесуточное содержание оксидов азота в пересчете на N2O5 в атмосферном воздухе населенных мест не должно превышать 0,1 мг/м3 при одновременном соблюдении требования о разовом максимальном содержании оксидов азота не более 0,3 мг/м3.

Целью данной работы является разработка и внедрение эффективного оборудования по очистке нитрозных газов.

1. Аналитический обзор

1.1 Свойства нитрозных газов

Оксиды азота являются одним из основных загрязнителей атмосферы, и поэтому ликвидация выброса их является актуальной задачей.

Оксиды азота (I), (II), (III), (IV) при нормальных условиях находятся в газообразном состоянии, оксид азота (V) - в твердом. Все оксиды, за исключением NO2, бесцветны, молекулы N02 окрашены в коричнево-красный цвет.

Оксид азота (I) N2O - единственный оксид азота, который не оказывает вредного воздействия на организм. Имеет приятный запах, сладковатый вкус, является анестезирующим средством. При высокой температуре проявляет окислительные свойства. Смеси оксида азота (I) с водородом, аммиаком и оксидом углерода (II) взрывоопасны.

Оксид азота NO обладает парамагнитными свойствами изза нечетного числа внешних электронов. Образуется при каталитическом окислении аммиака и является промежуточным соединением в технологии азотной кислоты. На воздухе окисляется до NO2.

Оксид азота (IV) существует в виде коричнево-красного соединения и его бесцветного димера-тетроксида диазота N2O4. В твердом и жидком состоянии находится преимущественно в виде N2O4. Жидкий тетроксид окрашен примесью NO2 (0,03 - 0 ,13%) в красно-бурый цвет.

Оксид азота (III) выделен индивидуально только в твердом состоянии в виде кристаллов голубого или бледно-синего цвета. В жидком виде оксид азота (III) диссоциирует в значительной степени на NO и N2О4, образуя смесь оксидов интенсивно синего цвета. Над растворами N2О3 в газовой фазе в состоянии равновесия содержится преимущественно NO.

Оксид азота (V) N2O5 - при обычной температуре неустойчивые расплывающиеся на воздухе бесцветные кристаллы. В технологии азотной кислоты N2O5 не образуется.

1.2 Способы очистки нитрозных газов

Существующие методы очистки подразделяются на три группы: · поглощение оксидов азота жидкими сорбентами;

· поглощение оксидов азота твердыми сорбентами;

· восстановление оксидов азота до элементарного азота на катализаторе.

Наиболее распространенным методом является очистка газов от оксидов азота путем поглощения их растворами Na2CO3 и Ca(OH)2, сравнительно реже NAOH и KOH.

Метод щелочной очистки требует больших капитальных затрат и эксплуатационных расходов, но главный его недостаток в том, что степень абсорбции оксидов азота не превышает 60-75% и, таким образом, этот метод не обеспечивает санитарной нормы очистки газов.

Полученные в процессе очистки щелока нуждаются в дальнейшей многостадийной переработке для получения из низ твердых солей. Метод поглощения оксидов азота твердыми сорбентами - силикагелем, алюмогелем, активированным углем и другими твердыми поглотителями - не нашел промышленного применения изза сложности, малой надежности и дороговизны.

Метод каталитического восстановления оксидов азота начал применяться только в последние годы и пока является: · большие капитальные затраты;

· громоздкость оборудования, изготовляемого из дефицитной нержавеющей стали;

· необходимость применения дорогостоящего катализатора;

· большие потери катализатора при регенерации;

· значительные расходы газов восстановителей (H2, CH4 или CO).

Для полного поглощения оксидов азота из газовых смесей необходимо предварительное окисление NO до NO2 не менее чем на 50-55%. Разработаны конструкции абсорбционных аппаратов, работающих при высоко турбулентном режиме, - это механические ротационные аппараты горизонтального и вертикального типов и полые распылительные абсорберы.

Поглощение оксидов азота жидкими сорбентами проводят в механических абсорберах с большим числом оборотов. Влияние гидродинамических условий на скорость абсорбции оксидов азота определялись в механических абсорберах с большим числом оборотов, а в качестве поглотителей испытывать растворы Ca(OH)2, NH3, Na2CO3 и др.

1.3 Способы повышения эффективности массообменных процессов в системах газ-жидкость

Массообмен - необратимый перенос массы компонента смеси в пределах одной или нескольких фаз. Осуществляется в результате хаотического движения молекул, макроскопического движения всей среды, а в турбулентных потоках - также в результате хаотического движения вихрей различного размера. Массобмен включает массоотдачу и массопередачу. Сущность массообмена, протекающего в газожидкостной системе, заключается в переносе некоторого количества вещества из одной фазы в другую через поверхность контакта фаз SF вследствие разницы концентраций компонента во взаимодействующих фазах DC. При этом количество вещества, переданное в единицу времени, определяет скорость массопередачи. Для интенсификации процесса необходимо увеличить скорость его протекания.

Масса целевого компонента, перешедшего из одной фазы в другую за единицу времени, или скорость массообмена прямопропорциональна движущей силе процесса - разнице усредненных концентраций целевого компонента во взаимодействующих фазах и площади контакта фаз, в точное равенство зависимость обращает коэффициент массопередачи KV, который отражает условия взаимодействия фаз и зависит от множества факторов.

В общем случае представление о возможности пути интенсификации массообменных процессов можно получить на основе анализа уравнения массопередачи.

, (1) где М - количество вещества, переданное из одной фазы в другую;

t - время проведения процесса;

KV - коэффициент массопередачи;

SF - площадь поверхности контакта фаз;

DC - движущая сила процесса.

Левая часть данного уравнения выражает скорость массопередачи. Из приведенной зависимости видно, что повышение скорости процесса возможно достичь при увеличении параметров, входящих в правую часть уравнения. Поскольку движущая сила массообмена является входным технологическим параметром и соответственно не подлежит изменению в рамках проектирования оборудования, то интенсификацию можно вести за счет увеличения двух других параметров - площади контакта фаз и коэффициента массопередачи.

Коэффициент массопередачи KV отражает условия взаимодействия фаз и зависит от множества факторов.

Физико-химические факторы: · температура

· давление

· концентрация вещества

· физические свойства взаимодействующих фаз.

Коэффициент массопередачи пропорционален коэффициенту диффузии D в степени от 0,5 до 0,67 и обратно пропорционален вязкости n в степени от 0,2 до 0,47.

Температура может влиять на коэффициент массопередачи только через изменение физических свойств системы. Увеличение температуры процесса T приводит к увеличению коэффициента диффузии D (пропорционально T1,75) и вязкости n (пропорционально T1,5).

Замечено, что при очень большой концентрации компонента в газовой фазе, соизмеримой с концентрацией самой фазы, коэффициент KV увеличивается.

Для жидкой фазы это не имеет значения.

Таким образом, для интенсификации массообмена достаточно подобрать такие физические параметры процесса и свойства обрабатываемых веществ, которые увеличивали бы общий коэффициент массопередачи. Однако в реальных условиях, из технологических соображений, физико-химические свойства веществ являются неизменными параметрами процесса. В этом случае увеличение скорости массообмена возможно лишь за счет гидродинамических или геометрических факторов.

Геометрические факторы: · размеры контактных элементов

· размер аппарата.

Анализ геометрических факторов интересен в основном при переходе от лабораторного оборудования к промышленным аппаратам. При этом коэффициент KV несколько уменьшается в сравнении с лабораторным аналогом. Уменьшение коэффициента массопередачи наблюдается и в аппаратах, в которых увеличивается геометрический размер контактных устройств (например, в насадочных колоннах). Для скрубберов коэффициент KV обратно пропорционален высоте абсорбционной зоны в степени от 0,33 до 0,8.

Следовательно, с точки зрения геометрических факторов, процесс массообмена идет интенсивнее в небольших аппаратах с контактными устройствами, имеющими меньшие геометрические параметры.

Гидродинамические факторы: · скорости и направление потоков

· подвод внешней энергии.

Высокая относительная скорость движения фаз значительно увеличивает коэффициент массопередачи. И направление движения фаз является важным фактором. Так, более высокое значение коэффициента KV достигается при условии противотока фаз; меньшее - при прямотоке и промежуточное - при перекрестном токе.

Экспериментально доказано, что массообмен, протекающий в тонких пленках или в мелких каплях, обладает большей интенсивностью. Из критериального уравнения хорошо видно, что увеличении коэффициента массоотдачи b пропорционально уменьшению толщины пленки d или диаметра капли

, (2)

Где D - коэффициент диффузии;

Re, Sc - критерии Рейнольдса и Шмидта, соответственно;

m, p - коэффициенты, определяемые экспериментальным путем.

Значительно увеличивают скорость массообмена внешние воздействия на систему, каковыми являются центробежное поле или амплитудные колебания. В опытах по абсорбции CO2 водой при частоте вибрации 37,5 - 41,7 Гц высота единицы переноса была в 5 - 6 раз ниже, чем при отсутствии вибрации.

Наряду с коэффициентом массопередачи важным параметром при массообмене является поверхность контакта между фазами. Чем больше поверхность, через которую осуществляется массообмен, тем интенсивнее протекает процесс.

Поэтому в аппаратах, с целью увеличения площади контакта фаз, применяют пленочное либо капельное течение жидкости совместно со струйным или пузырьковым (барботаж) течением газовой фазы. Это осуществляется с помощью: · развитой поверхности контактных элементов (насадочные колонны);

· интенсивных пенных или струйно-капельных режимов работы аппарата (тарельчатые колонны и аппараты с вертикальными контактными решетками);

· установки в аппарате механического перемешивающего устройства, способного диспергировать взаимодействующие фазы.

Последний способ хорош тем, что помимо увеличения межфазной поверхности, он позволяет накладывать на систему центробежное поле, также увеличивающее интенсивность процесса. Необходимо отметить, что на современном уровне развития техники обеспечение заданной площади контакта фаз в аппарате с пленочным течением требует больших габаритных размеров, нежели в аппарате использующим диспергирование фаз.

Также важным фактором, влияющим на скорость массообмена, является время контакта фаз. Чем меньше время контакта, тем выше коэффициент массопередачи. Однако в этом случае количество вещества, перешедшее из одной фазы в другую, также уменьшается. Поэтому представляет интерес не столько общее время контакта, сколько время, за которое происходит обновление поверхности массообмена. Из литературы известно, что скорость переноса вещества в момент образования межфазной поверхности достаточно высока. Причем со временем она быстро уменьшается и асимптотически стремится к некоторому постоянному значению. Увеличение интенсивности массообмена в этом случае может быть достигнуто за счет создания в системе таких условий, при которых межфазная поверхность будет обновляться за сравнительно короткий промежуток времени.

Понимание путей увеличения коэффициента массопередачи дает детальное рассмотрение процесса массопереноса. Массоперенос, как правило, состоит из нескольких последовательных стадий, т.е. поток целевого компонента, переносимого из одной фазы в другую, испытывает несколько последовательных сопротивлений. Если представить коэффициент массопередачи как величину обратную сумме сопротивлений массопереносу, то, очевидно, его увеличение будет связано со снижением сопротивления на каждой из стадий массопередачи.

Таким образом, конструкция массообменного аппарата, отвечающая наибольшей скорости массообмена, должна включать следующие черты: противоточное движение фаз, диспергирование фаз, наложение силового воздействия, небольшие контактные устройства и рабочие объемы, турбулентный режим течения. С этой точки зрения был предпринят анализ известных конструкций газожидкостных массообменных аппаратов.

2. Патентный поиск

Оценка разработок и создание отвечающих лучшим мировым достижениям и превосходящих их новых видов оборудования, технологических процессов, материалов не могут быть осуществлены без проведения патентных исследований на всех стадиях выполнения научно-исследовательских работ и опытно-конструкторских разработок.

Анализ описаний отечественных и зарубежных изобретений, а также информации технического, экономического правового и конъюнктурного характера позволяет выявить конкурирующие направления в изучаемой отрасли техники, определить наиболее перспективные из них, дать объективную оценку новизны и технико-экономической эффективности разрабатываемого объекта, использовать при проведении научно-исследовательских и опытно-конструкторских работ лучшие достижения мировой техники; своевременно защищать собственные технические решения, выполненные на уровне изобретения патентами в России и за рубежом.

В ходе выполнения курсовой работы был проведен поиск аналогичного оборудования с целью сравнения лабораторной установки с ранее разработанными устройствами. Перечень отобранных в процессе поиска массообменных аппаратов (таблица 1) приведен ниже. Наиболее интересные технические решения рассмотрены подробнее после таблиц.

2.1 Результаты патентного поиска

Патентный поиск роторных массообменных аппаратов за период с 1990 по 2011г. в Российской Федерации.

Таблица 1 - Патентный поиск

Предмет поиска (объект, его составные части) Страна выдачи, вид и номер охранного документа, классификационный индекс Заявитель с указанием страны, номер заявки, дата приоритета, конвенционный приоритет, дата публикации Сущность заявленного технического решения и цели его создания (по описанию изобретения или опубликованной заявки)

Барботажный абсорбер RU, С1, № 2040957, МПК B01D53/18 Тройнин В.Е. (RU), заявка № 93007888/26, опубл. 09.08.1995 1. Барботажный абсорбер, содержащий корпус с турбинной мешалкой в виде вала с погруженными в жидкость лопатками, средство для подачи газа к лопаткам, успокоитель потока и патрубок для отвода очищенного газа, отличающийся тем, что лопатки прикреплены к верхней и нижней частям роторного колеса, выполненного в виде соединенных между собой основаниями конусов, а средство для подачи газа установлено в виде соосно размещенной на валу трубы, соединенной с кожухом роторного колеса, причем указанный кожух снабжен по периметру кольцевой щелью с сечением в виде трубы Вентури и размещенным в нижней части окном для подачи жидкости. 2. Абсорбер по п.1, отличающийся тем, что верхняя часть кожуха в горловине кольцевой щели снабжена эжекционными отверстиями. 3. Абсорбер по пп. 1 и 2, отличающийся тем, что к периферийной части роторного колеса прикреплен кольцеобразный перфорированный диск с концентрично размещенными гофрами.

Роторный массообменный аппарат RU, С1, № 2081658, МПК B01D3/30 Сорокопуд А.Ф. (RU), Мухомадеев А.М. (RU), заявка № 95108112/25, опубл. 20.06.1997 Роторный массообменный аппарат, содержащий вращающиеся распылители, неподвижные тарелки и пристенные каплеотбойники, отличающийся тем, что неподвижные тарелки выполнены с перфорированной поверхностью для прохода жидкости и газа.

Центробежно- барботажный аппарат RU, С2, № 2261138, МПК B01D47/02 Калекин В.С. (RU), Ильин А.В. (RU), Калекин В.В. (RU), Калекин Д.В. (RU), заявка № 2004116891/15, приоритет от 03.06.2004, опубл. 27.09.2005 Центробежно-барботажный аппарат, содержащий верхнюю крышку, камеру с верхней и нижней торцевыми крышками, внутренней обечайкой в виде обратного перфорированного отверстиями конуса, размещенной в камере, подводящей трубой для жидкости, ориентированной внутрь обечайки, снабженной тарелкой для подачи и слива жидкости, размещенной в нижней торцевой крышке камеры с возможностью образования зазора с ее внутренней поверхностью, тангенциальный патрубок ввода газа, патрубок вывода газа, отличающийся тем, что в камере дополнительно размещена перегородка в виде пластины, расположенной между цилиндрическим корпусом камеры и обечайкой, выполненной в форме улитки от места сопряжения тангенциального патрубка ввода газа с цилиндрическим корпусом камеры, соединяющей верхнюю и нижнюю торцевые крышки, кроме того, верхняя и нижняя торцевые крышки выполнены с отверстиями.

Тепло- и массообменный аппарат RU, С1, № 2200054, МПК B01D53/18, B01D47/18 Бердников В.И. (RU), Карташов М.А. (RU), Баранов Д.А. (RU), Беляков О.Д. (RU) заявка № 2001134192/12, приоритет от 19.12.2001, опубл. 10.03.2003 1. Тепло- и массообменный аппарат, содержащий корпус, состоящий из цилиндрической части и двух фланцев, в верхней части которого установлены патрубки для подвода и отвода газа, а в нижней - патрубки для подвода и отвода жидкости, снабженный набором закрепленных в нем разделительных кольцевых перегородок, образующих секции, в каждой из которых на вращающемся валу установлен поперечный сплошной диск, к каждому из которых по бокам прикреплены пакеты кольцевых контактных дисков, установленные с зазором относительно корпуса, вала, друг друга и разделительных кольцевых перегородок и частично погруженные в жидкость, формирующие зигзагообразное радиально-осевое, последовательно-параллельное течение потока газа, отличающийся тем, что между крайними разделительными кольцевыми перегородками набора, внутри цилиндрической части корпуса установлены цилиндрические вставки, между которыми размещены остальные разделительные кольцевые перегородки набора, образующие совместно секции, причем цилиндрические вставки и кольцевые перегородки скреплены между собой и, как минимум, одна крайняя разделительная кольцевая перегородка набора скреплена с корпусом. 2. Тепло- и массообменный аппарат по п. 1, отличающийся тем, что цилиндрические вставки и разделительные кольцевые перегородки скреплены продольными шпильками, закрепленными в крайних разделительных кольцевых перегородках набора. 3. Тепло- и массообменный аппарат по п. 1 или 2, отличающийся тем, что вставки выполнены в виде цилиндрических обечаек. 4. Тепло- и массообменный аппарат по п. 1 или 3, отличающийся тем, что цилиндрические вставки и разделительные кольцевые перегородки скреплены продольными шпильками, закрепленными с одной стороны в крайней разделительной кольцевой перегородке набора, а с другой - во фланце корпуса. 5. Тепло- и массообменный аппарат по п. 1, отличающийся тем, что в нижней части разделительных кольцевых перегородок выполнены отверстия. 6.Тепло- и массообменный аппарат по п. 1, или 2, или 3, отличающийся тем, что в нижней части цилиндрических вставок выполнены отверстия, а по внешнему диаметру разделительных кольцевых перегородок установлены уплотнения.

Роторная массообменная колонна RU, С1, № 2009685, МПК B01D3/30 Нечаев Ю.Г. (RU), Есипов Г.П. (RU), Малашихин К.В. (RU), Нечаев А.Ю. (RU), заявка № 4945948/26, опубл. 30.03.1994 1. Роторная массообменная колонна, включающая вертикальный корпус, внутри которого размещен вал с закрепленными на нем контактными ступенями, каждая из которых состоит из распределительного стакана с отверстиями с закрепленными на нем контактными элементами, отличающаяся тем, что, с целью повышения эффективности разделения за счет диспергирования жидкости в объеме ступени и уменьшения гидравлического сопротивления за счет увеличения динамического напора, контактные элементы выполнены в виде гофрированных в продольном направлении лопастей с перфорациями по впадинам гофр и закреплен под углом к вертикальной плоскости. 2. Колонна по п. 1, отличающаяся тем, что отверстия на стакане расположены против впадин гофр. лопасти.

Массообменная колонна RU, С1, № 2135253, МПК B01D3/30 Нечаев Ю.Г. (RU), Есипов Г.П. (RU), Михальчук Е.М. (RU) заявка № 98106203/25, приоритет от 06.04.1998, опубл. 27.08.1999 1. Массообменная колонна, содержащая вертикальный цилиндрический корпус, вал с закрепленными на нем контактными устройствами, состоящими из коаксильно набранных с зазором усеченных конусов, обращенных вершинами вниз и закрепленных на корпусе сборных тарелок с патрубками для прохода пара (газа), отличающаяся тем, что на основаниях конусов закреплены горизонтальные диски, с внешней стороны которых установлены вертикальные перфорированные цилиндры, на которых по высоте в пределах каждого распределительного кармана выполнены отверстия в виде щелевых горизонтальных прорезей, расположенных на расстоянии друг от друга по высоте, при этом вышележащая прорезь перекрывает зазор между нижележащими прорезями. 2. Массообменная колонна по п. 1, отличающаяся тем, что вертикальный цилиндр может быть перфорирован круглыми отверстиями. 3.Массообменная колонна по п.1, отличающаяся тем, что внутренний конус оборудован полуоткрытым распределительным карманом, образованным диском, перфорированным цилиндром и коротким усеченным конусом.

Массообменная установка RU, С2, № 2166980, МПК B01D53/18, C02F1/20 C02F103/02 Зимин Б.А. (RU), заявка № 99115985/12, приоритет от 22.07.1999, опубл. 20.05.2001 1. Массообменная установка, имеющая две ступени последовательно соединенных массообменных аппаратов, первая ступень включает аппарат центробежно-вихревого типа, содержащий цилиндрический корпус, имеющий в нижней части отверстия или тангенциальные патрубки, с верхней и нижней торцевыми крышками, имеющими центральные отверстия, подводящие и отводящие патрубки жидкой и газообразной сред, из которых подводящие патрубки жидкой среды подсоединены тангенциально корпусу первой ступени, вторая ступень включает аппарат, представляющий собой емкость свободного слива или накопительную, в которой размещено устройство для диспергирования жидкости, к которому присоединен патрубок отвода жидкой среды от аппарата первой ступени, отличающаяся тем, что патрубок подвода газообразной среды присоединен к емкости второй ступени и эта емкость соединена трубой или газоходом с патрубком подвода газообразной среды аппарата центробежно-вихревого типа первой ступени, при этом нижняя часть корпуса центробежно-вихревого аппарата первой ступени охвачена обечайкой большего диаметра с верхней и нижней крышками. 2. Массообменная установка по п.1, отличающаяся тем, что внутри емкости второй ступени ниже диспергирующего устройства, выполненного в виде перфорированной трубы или трубы со щелями, располагается по меньшей мере еще одно диспергирующее устройство в виде перфорированной тарелки. 3. Массообменная установка по п.1, отличающаяся тем, что емкость с диспергирующими устройствами, представляющая собой вторую ступень массообменной установки, соединена по потокам газообразной и жидкой сред с несколькими, параллельно установленными аппаратами центробежно-вихревого типа, являющимися первой ступенью массообменной установки. 4. Массообменная установка по п.1, отличающаяся тем, что к нижней крышке корпуса аппарата центробежно-вихревого типа, по кромке отверстия присоединена обечайка диаметром, меньшим диаметра корпуса, образующая порог, препятствующий сливу воды через отверстие в нижней крышке. 5. Массообменная установка по пп.1 и 4, отличающаяся тем, что патрубок подвода газообразной среды пропущен внутрь центробежно-контактного устройства и установлен с зазором между нижней крышкой корпуса. 6. Массообменная установка по п.1, отличающаяся тем, что корпус емкости выполнен в виде вертикального цилиндра с верхней и нижней торцевыми крышками, патрубок подвода газообразной среды присоединен тангенциально корпусу емкости, а по центру верхней крышки емкости присоединен патрубок отвода газообразной среды. 7.Массообменная установка по п.1, отличающаяся тем, что корпус центробежно-вихревого аппарата выполнен составленным из двух цилиндров.

Тепло- и массообменный аппарат RU, С1, № 2321444, МПК B01D53/18 (2006.01) B01D47/18 (2006.01) B01D45/10 (2006.01) Бердников В. И. (RU), Бердников Д. В. (RU) заявка № 2004121548/15, приоритет от 15.07.2004, опубл. 10.01.2006 1. Тепло- и массообменный аппарат, содержащий цилиндрический корпус с днищем и, как минимум, одним съемным фланцем, в которых установлены патрубки для подвода и отвода газа и патрубки для подвода и отвода жидкости, вращающийся вал с установленными на нем соосно корпусу последовательно чередующимися разделительными кольцевыми перегородками, образующими секции, и поперечными сплошными дисками, между которыми установлены контактные пакеты, состоящие из кольцевых контактных дисков, которые установлены с зазором относительно корпуса, вала и друг друга, при этом разделительные кольцевые перегородки и поперечные сплошные диски жестко скреплены между собой продольными шпильками, закрепленными в крайних разделительных кольцевых перегородках, отличающийся тем, что вокруг разделительных кольцевых перегородок установлена с зазором относительно цилиндрического корпуса аппарата обечайка, которая жестко соединена, как минимум, с крайними разделительными кольцевыми перегородками, и которая совместно с валом, разделительными кольцевыми перегородками, поперечными сплошными дисками, контактными пакетами и продольными шпильками образует технологический корпус, вал выполнен из двух полуосей, при этом в полуоси со стороны выхода газа выполнено отверстие так, что один конец полости отверстия соединен с первой секцией со стороны этой полуоси, а второй - с патрубком отвода газа, установленным на фланце аппарата, при этом внутри полуоси с отверстием коаксиально установлен патрубок подвода жидкости, в крайней разделительной кольцевой перегородке со стороны отвода жидкости выполнены отверстия, при этом тепло- и массообменный аппарат установлен с наклоном от 2 до 10° в сторону патрубка отвода жидкости. 2. Тепло- и массообменный аппарат по п.1, отличающийся тем, что на контактных дисках выполнены кольцевые гофры, при этом контактные диски с гофрами установлены так, что их поверхности эквидестантны. 3. Тепло- и массообменный аппарат по п.1 или 2, отличающийся тем, что кольцевые гофры на контактных дисках выполнены прерывистыми. 4. Тепло- и массообменный аппарат по п.1, отличающийся тем, что патрубок подвода газа установлен на корпусе со стороны фланца, в котором установлен патрубок отвода газа.

Пенный массообменный аппарат RU, С1, № 2294790, МПК B01D47/04 (2006.01) Анискин С. В. (RU), Запорожец А. Г. (RU), заявка № 2005117012/15, приоритет от 27.05.2005, опубл. 10.03.2007 1. Пенный массообменный аппарат, содержащий вертикальный корпус, патрубки для подачи и вывода газа, сборник очищающей жидкости, размещенный в нижней части корпуса, патрубки для подачи очищающей жидкости и ее слива, а также газораспределительное контактное устройство, выполненное в виде абсорбционной тарелки, включающей одну или несколько сеток, причем патрубок для подачи очищаемого газа выполнен проходящим сквозь боковую стенку корпуса, а выход патрубка заглублен ниже контактного устройства в подсеточное пространство, отличающийся тем, что в подсеточном пространстве размещен струйный фильтр, который включает распылитель, установленный по оси аппарата с выходом очищающей жидкости, направленным к боковым стенкам корпуса. 2. Пенный массообменный аппарат по п.1, отличающийся тем, что распылитель выполнен в виде центробежной форсунки. 3. Пенный массообменный аппарат по п.1, отличающийся тем, что распылитель выполнен в виде вращающейся форсунки. 4. Пенный массообменный аппарат по п.1, отличающийся тем, что распылитель выполнен в виде отбойно-струйной форсунки. 5. Пенный массообменный аппарат по п.1, отличающийся тем, что распылитель выполнен в виде набора отдельных струйных цельнофакельных форсунок, установленных по окружности патрубка, подающего очищающую жидкость из сборника.

Тепломассообменный аппарат RU, С1, № 2081665, МПК B01D11/00 Хоняк И.И. (RU), Смирнов В.Ю. (RU), Шорина Л.А. (RU), Яруллин Р.Н. (RU), заявка № 95104571/25, опубл. 20.06.1997 Тепломассообменный аппарат, включающий корпус, фильтровальное устройство, разъемно закрепленное с корпусом, крышку, патрубки для ввода и вывода жидких компонентов, патрубок вывода твердого компонента с регулируемым сечением, дно, вал с мешалками, шнек удаления твердого компонента, отличающийся тем, что аппарат дополнительно снабжен лепестковым радиатором, тремя горизонтальными валами с мешалками и вентиляционными коллекторами, при этом лепестковый радиатор расположен вдоль горизонтальной оси аппарата и соединен с полостью терморубашки, смонтированной на корпусе, внутренние стенки которого имеют равномерно расположенные плоские сегменты, валы с мешалками расположены вокруг лепесткового радиатора и попарно параллельны друг другу, вентиляционные коллекторы, имеющие рубашку, смонтированы вдоль продольных сквозных пазов, выполненных в крышке, с внутренней стороны которой закреплен ороситель, являющийся одновременно упором для верхнего фильтровального устройства, а дно выполнено профильным и двойным, верхнее из которых одновременно является нижним фильтровальным устройством, вдоль продольной оси которого расположен шнек.

Rotary centrifugal contactor United States Patent 5084249, Primary Class: 422/258 Martin, Peter D. (Abingdon, GB), Application Number: 07/346401 Publication Date: 01/28/1992 The invention relates to a rotary centrifugal contactor, for passing two liquids of different densities in countercurrent flow radially within a rapidly rotated cylindrical chamber. The contactor includes an upright shaft to which is fixed a titanium rotor disc of diameter 0.6 m. Around this is fixed an annular hollow stainless steel chamber of rectangular cross-section 0.2 m wide and 0.12 m high, which is below the level of the disc; an upstanding L-cross-section flange around the inner perimeter of the chamber rests on the outer perimeter of the disc and is attached to it by pins. Between the chamber and the shaft is a static core of neutron absorbing material, and this material extends as shielding radially outwards below the chamber, and upwards outside the chamber, so that the chamber is in an annular trough defined by the core and the shielding. Above the contactor are two static feed pipes and for the two liquids (referred to as the heavy phase and the light phase), which discharge into two open-topped concentric annular feed channels and fixed on the upper surface of the rotor disc. The heavy phase feed channel communicates with the chamber via six radial tubes joined to two perforated distributor-ring tubes within the chamber near its radially innermost wall. Similarly the light phase feed channel communicates with the chamber via six radial tubes joined to three perforated distributor-ring tubes within the chamber near its outermost wall. Between the distributor-ring tubes and the distributor-ring tubes the chamber is filled with packing material (shown symbolically in the Figures) to ensure efficient interfacial contacting of the phases. Apertures and are provided in the floor of the chamber through which the liquids can emerge after contacting each other, immediately adjacent to the outermost and innermost walls of the chamber respectively, the heavy phase outlet apertures incorporating an air-pressure controlled offtake double weir. A duct extending through the inner wall, the disc and the shaft enables pressurized air or other gas to be supplied to the double weir. The lower part of the annular trough is divided into two annular open-topped effluent channels and by baffles, and respective offtake ducts communicate with these channels and. Liquid emerging through the aperture or falls into the respective channel.

Роторный центробежный аппарат США 5084249, Классификационный класс: 422/258 Martin, Peter D. (Abingdon, GB), Заявка № 07/346401, опубл. 28.01.1992 Роторный центробежный аппарат, в котором две жидкости различной плотности проходят радиально в противотоке внутри быстро вращающейся цилиндрической камеры. Аппарат включает в себя вертикальный вал, на котором закрепляется титановый диск ротора диаметром 0.6 м, зафиксированную кольцевую полую камеру L-сечения из нержавеющей стали 0.2 м в ширину и на 0.12 м в длину, который по всему внутреннему периметру камеры опирается на внешний периметр диска и прикреплен к нему с помощью штифтов. Между камерой и валом статическое ядро ??с абсорбирующим материалом, и этот материал распространяется в качестве защитного кольца наружу ниже камеры, и вверх вне камеры, так что камера находится в кольцевом желобе, что определяет его основную защиту экранированием. Над аппаратом две статические трубы подачи для двух жидкостей (тяжелую фазу и легкую фазу), которые расположены в открытых верхних концентрических кольцевых каналах подачи и закреплены на верхней поверхности ротора диска. Тяжелая фаза питает камеру через шесть радиальных труб присоединенных к двум перфорированным кольцам в камере вблизи ее внутренней стены. Аналогично легкая фаза питает камеру через шесть радиальных труб присоединенных к трем перфорированным кольцам в камере вблизи его внешней стене. Между кольцами труб на внешней стене и кольцами труб на внутренней стене камера заполняется упаковочным материалом (показан символически в цифрах) для обеспечения эффективного поверхностного контакта фаз. В канал, проходящий через внутреннюю стенку, диск и вал поставляется сжатый воздух или другой газ в двойную плотину. Нижняя часть кольцевого желоба состоит из двух кольцевых с открытым верхом стоков-каналов и перегородок, а также соответствующих каналов отвода.

Two-part fluid contactor United States Patent 4786480, Primary Class: 422/259 Martin, Peter D. (Abingdon, GB2), Application Number: 06/899633 Publication Date: 11/22/1988 According to one aspect of the present invention there is provided a centrifugal contactor comprising a first part and a second part having a plurality of annular regions between the first part and the second part, a plurality of settling compartments in one of the parts, means for introducing a first fluid and a second fluid into the annular regions, means for transferring a mixture of the first fluid and the second fluid to the settling compartments and means for removing substantially separated first fluid and second fluid from the settling compartments, the arrangement being such that, in operation, the first part and the second part may be moved relatively one to the other so that conditions exist in the annular regions such that the first fluid and the second fluid disperse one within the other to form a mixture of fluids.

Двухфазный жидкостной аппарат США 4786480, Классификационный класс: 422/259 Martin, Peter D. (Abingdon, GB2), Заявка № 06/899633 Опубл. 22.11.1988 По словам одного из аспектов настоящего изобретения обеспечивается центробежными контактора включает первую часть и вторую часть, имеющую множество кольцевых областей между первой части и второй части, множество отсеков урегулирования в одной из частей, средств для внедрение первой жидкости и второй жидкости в кольцевых областях, средства для передачи смеси первой жидкости и жидкости для второго решения отсеков и средства для удаления существенно отделены первой жидкости и жидкости из второго решения отсеков, расположение быть таким, что в операции, первая часть и вторая часть может быть перемещена относительно друг друга так, что условия существуют в кольцевых областей так, что первый жидкости и жидкости второго разгона один в другой, образуя смесь жидкостей

Rotary contactor United States Patent 2912310, Primary Class: 422/209 Henry, Walley Keith Hendrik, Reman Gerrit, Publication Date: 11/10/1959

Роторный аппарат США 2912310, Классификационный класс 422/209 Henry, Walley Keith Hendrik, Reman Gerrit, опубл. 10.11.1959

2.2 Описание наиболее оригинальных конструкций

Рисунок 1 - схема заявляемого барботажного абсорбера, общий вид

Рисунок 2 - то же, вид сечения А-А на рисунке 1

Рисунок 3 - узел I на рисунке 1 (увеличено)

Рисунок 4 - вид сечения Б-Б на рисунке 3

Использование: газоочистное оборудование, которое предназначено для очистки газов от газообразных примесей в различных отраслях промышленности. Сущность изобретения: барботажный абсорбер содержит корпус с турбинной мешалкой в виде вала с погруженными в жидкость лопатками, средство для подачи газа к лопаткам, успокоитель потока и патрубок для отвода очищенного газа. Лопатки прикреплены к верхней и нижней частям роторного колеса, выполненного в виде соединенных между собой основани
Заказать написание новой работы



Дисциплины научных работ



Хотите, перезвоним вам?