Использование цифровых сигналов для кодирования информации, регистрации и обработки; унификация операций преобразования на всех этапах ее обращения. Задачи и физическая трактовка процессов идеальной интерполяции сигналов алгебраическими полиномами.
Аннотация к работе
В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом. Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования.Если шкала каждой координаты непрерывная, то это представление называется дискретно-аналоговым, а если шкала квантованная, то представление дискретно-квантованное, т.е. цифровое. Дискретно-аналоговое представление сообщений может быть реализовано различными способами в зависимости от выбора системы координат. Наибольшее применение в РСПИ получили представления, у которых в качестве координат сообщения используется текущее значение сигнала в фиксированные моменты времени. Координаты называются выборками или отсчетами, а моменты времени - точками опроса. Восстановление непрерывной функции по ее выборкам называется интерполяцией.Основное математическое соотношение интерполяционной обработки: , (8) можно проиллюстрировать следующим образом (рисунок 3). В качестве интерполяционной функции в этом примере используется функция . Операцию интерполяции можно выполнить с помощью линейного фильтра с импульсной характеристикой вида: . Для доказательства этого утверждения обозначим сигнал на входе и выходе линейного фильтра через и (рисунок 4): Рисунок 4Интерполяция возможна в том случае, если в сигнале имеются корреляционные связи. Требуется определить форму интерполирующей функции, обеспечивающей при заданных значениях коэффициента корреляции минимум СКО Можно показать, что в этом случае оптимальная интерполирующая функция имеет вид: , (15) где - весовые коэффициенты, однозначно связанные со значениями коэффициентов корреляции в точках , . Т.о., оптимальная интерполирующая функция может быть определена как взвешенная сумма функций времени равных корреляционной функции первичного сигнала. Как следствие этой теории может бать доказана следующая теорема: Если на интервале интерполяции корреляционная функция и ее взвешенная сумма хорошо аппроксимируются полиномом, то использование этого приближения обеспечит среднеквадратическое приближение близкое к идеальному.Как было показано выше, для первичных сигналов с разными корреляционными функциями необходимо использовать разные интерполирующие функции. Такой подход не приемлем для практики, т.к. требует выполнения большого объема предварительных работ для определения вида интерполирующих функций. Применение в качестве интерполирующих функций хорошо программируемых функций с выбором частоты опроса, обеспечивающих во всех случаях требуемую верность. Во многих случаях в качестве интерполирующих путей используются алгебраические полиномы низких степеней, в частности полиномы Лагранжа. Интерполирующая функция по Лагранжу записывается в следующем виде: (21) где - символ произведения, в котором отсутствуют сомножители при .Определим частоту опроса первичного сигнала при среднем квадратическом приближении алгебраическими полиномами. Используем показатель верности оценки в форме интегральной средней квадратической ошибки Применим эту формулу для определения частоты опроса четырех моделей первичного сигнала: Модель 1. Применяя косинус преобразование Фурье от , получим функцию корреляции этого сигнала: . Энергетический спектр этого сигнала описывается соотношениемДля всех моделей, за исключением третьей, интерполяция полиномами более высокого порядка позволяет уменьшить частоту опроса при той же верности. Увеличивать степень полинома целесообразно только при увеличении требований к точности интерполяции. Для третьей модели переход от линейной модуляции к квадратичной нецелесообразен, что объясняется свойствами марковских сигналов.
План
Содержание
Введение
1. Дискретно-аналоговое представление регулярными выборками
2. Физическая трактовка процессов интерполяции сигналов
3. Задачи идеальной интерполяции
4. Интерполяция алгебраическими полиномами
5. Определение частоты опроса
Заключение
Список литературы
Введение
В первой половине ХХ века при регистрации и обработке информации использовались, в основном, измерительные приборы и устройства аналогового типа, работающие в реальном масштабе времени, при этом даже для величин, дискретных в силу своей природы, применялось преобразование дискретных сигналов в аналоговую форму. Положение изменилось с распространением микропроцессорной техники и ЭВМ. Цифровая регистрация и обработка информации оказалась более совершенной и точной, более универсальной, многофункциональной и гибкой. Мощь и простота цифровой обработки сигналов настолько преобладают над аналоговой, что преобразование аналоговых по природе сигналов в цифровую форму стало производственным стандартом.
Под дискретизацией сигналов понимают преобразование функций непрерывных переменных в функции дискретных переменных, по которым исходные непрерывные функции могут быть восстановлены с заданной точностью. Роль дискретных отсчетов выполняют, как правило, квантованные значения функций в дискретной шкале координат. Под квантованием понимают преобразование непрерывной по значениям величины в величину с дискретной шкалой значений из конечного множества разрешенных, которые называют уровнями квантования. Если уровни квантования нумерованы, то результатом преобразования является число, которое может быть выражено в любой числовой системе. Округление с определенной разрядностью мгновенных значений непрерывной аналоговой величины с равномерным шагом по аргументу является простейшим случаем дискретизации и квантования сигналов при их преобразовании в цифровые сигналы.
Как правило, для производственных задач обработки данных обычно требуется значительно меньше информации, чем ее поступает от измерительных датчиков в виде непрерывного аналогового сигнала. При статистических флюктуациях измеряемых величин и конечной погрешности средств измерений точность регистрируемой информация также всегда ограничена определенными значениями. При этом рациональное выполнение дискретизации и квантования исходных данных дает возможность снизить затраты на хранение и обработку информации.
Кроме того, использование цифровых сигналов позволяет применять методы кодирования информации с возможностью последующего обнаружения и исправления ошибок при обращении информации, а цифровая форма сигналов облегчает унификацию операций преобразования информации на всех этапах ее обращения.
Вывод
Для всех моделей, за исключением третьей, интерполяция полиномами более высокого порядка позволяет уменьшить частоту опроса при той же верности.
1. При переходе от линейной интерполяции к квадратичной, уменьшение частоты опроса не столь значительно, как при переходе от ступенчатой интерполяции к линейной.
2. Увеличивать степень полинома целесообразно только при увеличении требований к точности интерполяции.
3. Для третьей модели переход от линейной модуляции к квадратичной нецелесообразен, что объясняется свойствами марковских сигналов.
4. При интерполяции алгебраическими полиномами первичного сигнала коэффициент корреляции между соседними выборками равен 0,85 - 0,995. Это приводит к неэффективному использованию пропускной способности канала передачи информации.
5. Для определения частоты опроса необходимо располагать: - спектральными характеристиками первичного сигнала, т.е. полосой по уровню 0,99 энергии сигнала;
- точностными характеристиками, т.е. показателем верности %;
- задать алгоритм обработки, т.е. тип интерполирующего полинома.
Список литературы
1. Радиотехнические методы передачи информации: Учебное пособие для вузов / В.А. Борисов, В.В. Калмыков, Я.М. Ковальчук и др.; Под ред. В.В. Калмыкова. М.: Радио и связь. 1990. 304с.
2. Системы радиосвязи: Учебник для вузов / Н.И. Калашников, Э.И. Крупицкий, И.Л. Дороднов, В.И. Носов; Под ред. Н.И. Калашникова. М.: Радио и связь. 1988. 352с.
3. Тепляков И.М., Рощин Б.В., Фомин А.И., Вейцель В.А. Радиосистемы передачи информации: Учебное пособие для вузов / М.: Радио и связь. 1982. 264с.
4. Кириллов С.Н., Стукалов Д.Н. Цифровые системы обработки речевых сигналов. Учебное пособие. Рязань. РГРТА, 1995. 80с.