Понятия теории вероятностей и математической статистики, применение их на практике. Определение случайной величины. Виды и примеры случайных величин. Закон распределения дискретной случайной величины. Законы распределения непрерывной случайной величины.
Аннотация к работе
Развитие ее как отдельной науки пришлось на середину XVII века, и началось с переписки двух известных во всем мире французских математиков: Блеза Паскаля и Пьера де Ферма. Так, например, итальянский математик Лука Пачоли еще в 1494 в своем труде «Сумма арифметики, геометрии, отношений и пропорций» («Summa de arithmetica, geometria, proportioni et proportionalita»), рассмотрел одну из задач о вероятностях, но, к сожалению, привел ошибочное решение.Вентцель, например, определяет случайную величину, как величину, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно [1]. Иначе говоря, случайная величина это величина, имеющая целый набор допустимых значений, но принимающая лишь одно, и какое именно, заранее точно сказать нельзя.К дискретным относятся те случайные величины, множество значений которых конечно или фиксировано. Примером дискретной случайной величины, можно считать количество попаданий в цель при заранее определенном числе выстрелов. В качестве примера для непрерывной случайной величины, можно взять количество кругов на воде, после попадания в нее камня, или расстояние, которое пролетит стрела, прежде чем упасть на землю.Любое соотношение между допустимыми значениями случайной величины и вероятностями их наступления называют законом распределения дискретной случайной величины. Существует два способа задания закона распределения: · Аналитически, когда закон распределения задается в виде таблицы соответствия значений случайной величины и их вероятностью, именуемой рядом распределения: Таблица 1 - ряд распределения случайной величины Здесь, в первой строке располагаются возможные значения случайной величины, а во второй - их вероятности, при этом сумма всех вероятностей равна единице: ; (1) · Графически, когда таблица распределения случайно величины принимает многоугольника распределения: Рисунок 1 - многоугольник распределения случайной величиныРассмотренные выше правила распределения случайной величины являются справедливыми лишь по отношению к дискретным величинам, в силу того, что все перечисленные законы строятся исключительно из соображения, что количество возможных значений случайной величины конечно и строго фиксировано. Именно поэтому, например, распределить непрерывную случайную величину по закону Пуассона или Бернулли не получится, так как невозможно перечислить количество допустимых значений данной величины - оно бесконечно. Стоит отметить, что в виде функции распределения, можно описывать как непрерывную, так и дискретную случайные величины - это универсальная характеристика. Равенство (5) - дифференциальный закон распределения случайной величины, который выражает крутизну функции распределения F(x). Заметим, что дифференциальный закон распределения случайной величины не является универсальным - он применим исключительно к непрерывным случайным величинам.Методы, средства и законы теории вероятностей и математической статистики на протяжении всех этапов формирования дисциплины, являлись актуальным, какими и остаются вплоть до наших дней. Главный принцип методов, позволивший затронуть столь огромное количество отраслей и сфер знания - универсальность. С каждым годом она становится все сложнее, повышается быстродействие, количество производимых в секунду операций, и все это происходит не без участия математической статистики, которая, в свою помогает оптимизировать работу вычислительных систем и комплексов, повышает точность расчетов, осуществляет прогностическую функцию.
План
ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ
1. СЛУЧАЙНАЯ ВЕЛИЧИНА
1.1 Определение случайной величины
1.2 Виды и примеры случайных величин
2. ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНОЙ ВЕЛИЧИНЫ
2.1 Закон распределения дискретной случайной величины
2.2 Законы распределения непрерывной случайной величины
ЗАКЛЮЧЕНИЕ
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
Вывод
Методы, средства и законы теории вероятностей и математической статистики на протяжении всех этапов формирования дисциплины, являлись актуальным, какими и остаются вплоть до наших дней. Главный принцип методов, позволивший затронуть столь огромное количество отраслей и сфер знания - универсальность. Их с легкостью можно применять в любой дисциплине, и при этом они не теряют своей силы, остаются справедливыми.
Но никогда еще теория вероятностей не была столь востребована, как сегодня. Связано это в первую очередь с невероятными темпами развития и роста вычислительной техники. С каждым годом она становится все сложнее, повышается быстродействие, количество производимых в секунду операций, и все это происходит не без участия математической статистики, которая, в свою помогает оптимизировать работу вычислительных систем и комплексов, повышает точность расчетов, осуществляет прогностическую функцию.
Данная работа частично помогает разобраться в азах дисциплины. Знакомит с фундаментальными понятиями, такими как дискретные и непрерывные случайные величины, поясняет разницу между последними. Знакомит с законами их распределения, с дальнейшим применением всех полученных знаний на практике.
Список литературы
1. Вентцель, Е.С. Теория вероятностей/ Е.С. Вентцель - М.:Наука, 1969г.
2. Смирнов, Н.В. Курс теории вероятностей и математической статистики для технических приложений./ Н.В. Смирнов, И.В. Дунин-Барковский - М.: «Наука», 1969г.
3. Пустыльник, Е.И. Статистические методы анализа и обработка наблюдений: учебное пособие/ Е.И. Пустыльник. - М.:«Наука», 1968г.
4. Джонсон, Н. Статистика и планирование в науке и технике./ Н. Джонсон, Ф. Лион - М.: «Мир», 1969г.