Базисные сплайны - Курсовая работа

бесплатно 0
4.5 31
Определение сплайна степени n дефекта. Простейший пример сплайна - единичная функция Хевисайда. Теорема о линейно независимых функциях и ее доказательство. Базисные сплайны с конечными носителями. Тождество Лемма. Представление многочленов сплайнами.

Скачать работу Скачать уникальную работу

Чтобы скачать работу, Вы должны пройти проверку:


Аннотация к работе
Большинство численных методов решения задач математического анализа так или иначе связано с аппроксимацией функций. Классический метод ее решения состоит в построении интерполяционного многочлена Лагранжа, определяемого равенством Хотя согласно теореме Вейерштрасса всякая непрерывная функция на отрезке может быть как угодно хорошо приближена многочленами, практические возможности применения многочленов Лагранжа ограничены. С. Н. Бернштейном (1916 г.) было установлено, что последовательность интерполяционных многочленов Лагранжа построенных для непрерывной функции на отрезке [-1, 1] по равноотстоящим узлам , с возрастанием не стремится к . Еще более любопытен другой пример, восходящий к Рунге (1901 г.) и состоящий в том, что указанный интерполяционный процесс не сходится на [-1, 1] даже для гладкой сколь угодно раз дифференцируемой функции (рис. 0.1). Получающиеся при этом гладкие кусочно-многочленные функции с однородной структурой (составленные из многочленов одной и той же степени) называются сплайн-функциями или просто сплайнами.

Вы можете ЗАГРУЗИТЬ и ПОВЫСИТЬ уникальность
своей работы


Новые загруженные работы

Дисциплины научных работ





Хотите, перезвоним вам?