Решение систем уравнений методом Гаусса, с помощью формул Крамера. Построение пространства решений однородной системы трех линейных уравнений с четырьмя неизвестными с указанием базиса. Определение размерности пространства решений неоднородной системы.
Аннотация к работе
Получили трапециевидную матрицу, в которой только две ненулевые строки. Мы нашли общее решение исходной системы: б) Найдем базисное решение исходной системы. Придадим параметру С1, С2, С3, поочередно следующее значение: С1 = 1, С2 = 0 и С1 = 1, С2 = 0, тогда получим два частных решения системы, линейно-независимых между собой, Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения.