Аналіз залежностей ймовірнісних характеристик процесу обслуговування в багатоканальних мережах Джексона. Побудова ефективних алгоритмів, явних та апроксимативних формул для параметрів процесу обслуговування в перехідному та стаціонарному режимах.
Аннотация к работе
НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ УДК 519.21 Автореферат дисертації на здобуття наукового ступеня кандидата фізико-математичних наук БАГАТОКАНАЛЬНІ МЕРЕЖІ ДЖЕКСОНА З КЕРОВАНИМ ДЖЕРЕЛОМ ВИМОГ 01.05.01 - теоретичні основи інформатики та кібернетики ШМИГЕВСЬКИЙ МИКОЛА ВАСИЛЬОВИЧ Київ-2000 Дисертацією є рукопис. Робота виконана на кафедрі вищої математики №2 Національного технічного університету України Київський політехнічний інститут. Науковий керівник: Лебєдєв Євген Олександрович, кандидат фізико-математичних наук, старший науковий співробітник Київський національний університет імені Тараса Шевченка, доцент кафедри прикладної статистики. Київ). Роботи з проектування, впровадження, експлуатації та модернізації інформаційно-обчислювальних систем та мереж, мереж зв’язку стимулювали розвиток теорії масового обслуговування. Як характерні особливості цих результатів можна відзначити багатовимірність процесу обслуговування, що вивчається, збалансованість інтенсивностей потоків, мультиплікативну форму стаціонарного розподілу. Моделі, що розглядаються в даній дисертації, відрізняються від класичних багатоканальних мереж Джексона тим, що параметри джерела вимог керуються марківським випадковим процесом. Сформульована мета обумовлює наступні задачі досліджень: - дослідження функціональних залежностей генератрис процесу обслуговування в перехідному режимі; - пошук умов існування стаціонарного режиму для керованих мереж марківського та напівмарківського типу; - вивчення асимптотичних властивостей біномних моментів та генератрис послідовності біномних моментів; - побудова апроксимативного дифузійного процесу для мереж у перехідному та стаціонарному режимах при критичному навантаженні. Застосовані методи досліджень базуються на апараті теорії масового обслуговування, теорії багатовимірного марківського відновлення, тауберових теорем для перетворень Лапласа, функціональних граничних теорем типу дифузійної апроксимації. Дисертаційна робота має теоретичний характер і є внеском у перспективний напрямок досліджень з теорії масового обслуговування, пов’язаний з вивченням систем та мереж із керованими параметрами.